参数方程中t的几何意义
答案:4 悬赏:40 手机版
解决时间 2021-03-22 18:46
- 提问者网友:不要迷恋哥
- 2021-03-22 15:48
参数方程中t的几何意义
最佳答案
- 五星知识达人网友:逃夭
- 2021-03-22 16:27
参数方程中t的几何意义要看具体的曲线方程了,一般都是长度,角度等几何量,也有一些是不容易找到对应的几何量的。
比如:
对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。
对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。
拓展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:
并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。
参考资料:百度百科-参数方程
比如:
对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。
对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。
拓展资料参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:
并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。
参考资料:百度百科-参数方程
全部回答
- 1楼网友:忘川信使
- 2021-03-22 19:38
这要看具体的曲线方程了,一般都是长度,角度等几何量,也有一些是不容易找到对应的几何量的。比如:
对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。
对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。
对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。
对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。
- 2楼网友:旧脸谱
- 2021-03-22 18:13
哪种参数方程,如直线参数方程,抛物线参数方程等
- 3楼网友:撞了怀
- 2021-03-22 18:04
对于直线:x=x0+tcosa, y=y0+tsina, 参数t是直线上P(x,y)到定点(x0, y0)的距离。
对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。
对于圆:x=x0+rcost, y=y0+rsint, 参数t是圆上P(x, y)点水平方向的圆心角。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯