幂函数与指数函数的区别和联系?
答案:2 悬赏:80 手机版
解决时间 2021-04-25 08:36
- 提问者网友:美人性情
- 2021-04-24 11:42
幂函数与指数函数的区别和联系?
最佳答案
- 五星知识达人网友:第幾種人
- 2021-04-24 13:12
在某变化过程中,有两个变量x,y,如果对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做值域.
指数函数:一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量。函数的定义域是R。
对数函数是指数函数的反函数,教材是根据互为反函数的两个函数的图象间关于直线y=x对称的性质。
函数y=x^a叫做幂函数,其中x是自变量,a是常数(这里我们只讨论a是有理数n的情况). 好辛苦打的字 希望你能满意 谢谢接纳答案
指数函数:一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量。函数的定义域是R。
对数函数是指数函数的反函数,教材是根据互为反函数的两个函数的图象间关于直线y=x对称的性质。
函数y=x^a叫做幂函数,其中x是自变量,a是常数(这里我们只讨论a是有理数n的情况). 好辛苦打的字 希望你能满意 谢谢接纳答案
全部回答
- 1楼网友:痴妹与他
- 2021-04-24 14:11
1.指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1)
性质比较单一,当a>1时,函数是递增函数,且y>0;
当0<a<1时,函数是递减函数,且y>0.
2.幂函数:自变量x在底数的位置上,y=x^a(a不等于1).
a不等于1,但可正可负,取不同的值,图像及性质是不一样的。
高中数学里面,主要要掌握a=-1、2、3、1/2时的图像即可。其中当a=2时,函数是过原点的二次函数。其他a值的图像可自己通过描点法画下并了解下基本图像的走向即可。
3.y=8^(-0.7)是一个具体数值,并不是函数,如果要和指数函数或者幂函数联系起来也是可以的。首先你可以将其看成:指数函数y=8^x(a=8),当x=-0.7时,y的值;或者将其看成:幂函数y=x^(-0.7)(a=-0.7),当x=8时,y的值。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯