如图平行四边形ABCD中,∠C=90度,沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=16,AB=8,则DE的长________.
答案:2 悬赏:70 手机版
解决时间 2021-03-24 04:02
- 提问者网友:饥饿走向夜
- 2021-03-23 05:47
如图平行四边形ABCD中,∠C=90度,沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=16,AB=8,则DE的长________.
最佳答案
- 五星知识达人网友:行雁书
- 2020-05-17 22:47
10解析分析:先根据有一个角是直角的平行四边形是矩形判定四边形ABCD是矩形,得出∠A=90°,再由翻折变换的性质得出∠CBD=∠C′BD,根据平行线的性质得出∠ADB=∠CBD,进而得出BE=DE,然后设DE=x,则BE=x,AE=16-x,在Rt△ABE中利用勾股定理求出x的值即可.解答:∵平行四边形ABCD中,∠C=90度,
∴平行四边形ABCD是矩形,
∴∠A=90°,AD∥BC.
∵Rt△DC′B由Rt△DBC翻折而成,
∴∠CBD=∠C′BD.
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠C′BD,
∴BE=DE.
设DE=x,则BE=x,AE=16-x,
在Rt△ABE中,∠A=90°,
∴AB2+AE2=BE2,即82+(16-x)2=x2,
解得x=10,即DE=10.
故
∴平行四边形ABCD是矩形,
∴∠A=90°,AD∥BC.
∵Rt△DC′B由Rt△DBC翻折而成,
∴∠CBD=∠C′BD.
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠C′BD,
∴BE=DE.
设DE=x,则BE=x,AE=16-x,
在Rt△ABE中,∠A=90°,
∴AB2+AE2=BE2,即82+(16-x)2=x2,
解得x=10,即DE=10.
故
全部回答
- 1楼网友:封刀令
- 2019-07-30 18:27
收益了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯