matlab中的euler的算法问题
答案:2 悬赏:0 手机版
解决时间 2021-05-10 11:15
- 提问者网友:温旧梦泪无声
- 2021-05-10 02:18
用euler.m求出DY=y+2x/y^2,且y(0)=1,并且作图,谢谢啦
最佳答案
- 五星知识达人网友:怙棘
- 2021-05-10 03:26
y=dsolve('Dy=y+2*x/y^2','y(0)=1','x')
syms x,y;
ezplot(y)
syms x,y;
ezplot(y)
全部回答
- 1楼网友:洒脱疯子
- 2021-05-10 03:42
拉格朗日function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s;end SOR迭代法的Matlab程序 function [x]=SOR_iterative(A,b)% 用SOR迭代求解线性方程组,矩阵A是方阵 x0=zeros(1,length(b)); % 赋初值 tol=10^(-2); % 给定误差界 N=1000; % 给定最大迭代次数 [n,n]=size(A); % 确定矩阵A的阶 w=1; % 给定松弛因子 k=1; % 迭代过程 while k<=N x(1)=(b(1)-A(1,2:n)*x0(2:n)')/A(1,1); for i=2:n x(i)=(1-w)*x0(i)+w*(b(i)-A(i,1:i-1)*x(1:i-1)'-A(i,i+1:n)*x0(i+1:n)')/A(i,i); end if max(abs(x-x0))<=tol fid = fopen('SOR_iter_result.txt', 'wt'); fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k); fprintf(fid,'x的值\n\n'); fprintf(fid, '%12.8f \n', x); break; end k=k+1; x0=x; end if k==N+1 fid = fopen('SOR_iter_result.txt', 'wt'); fprintf(fid,'\n********用SOR迭代求解线性方程组的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k); fprintf(fid,'超过最大迭代次数,求解失败!'); fclose(fid); end Matlab中龙格-库塔(Runge-Kutta)方法原理及实现龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。龙格库塔方法的理论基础来源于泰勒公式和使用斜率近似表达微分,它在积分区间多预计算出几个点的斜率,然后进行加权平均,用做下一点的依据,从而构造出了精度更高的数值积分计算方法。如果预先求两个点的斜率就是二阶龙格库塔法,如果预先取四个点就是四阶龙格库塔法。一阶常微分方程可以写作:y'=f(x,y),使用差分概念。(Yn+1-Yn)/h= f(Xn,Yn)推出(近似等于,极限为Yn')Yn+1=Yn+h*f(Xn,Yn)另外根据微分中值定理,存在0<t<1,使得Yn+1=Yn+h*f(Xn+th,Y(Xn+th))这里K=f(Xn+th,Y(Xn+th))称为平均斜率,龙格库塔方法就是求得K的一种算法。利用这样的原理,经过复杂的数学推导(过于繁琐省略),可以得出截断误差为O(h^5)的四阶龙格库塔公式:K1=f(Xn,Yn);K2=f(Xn+h/2,Yn+(h/2)*K1);K3=f(Xn+h/2,Yn+(h/2)*K2);K4=f(Xn+h,Yn+h*K3);Yn+1=Yn+h*(K1+2K2+2K3+K4)*(
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯