设α是等腰三角形的一个底角,则α的取值范围是A.0<α<90°B.α<90°C.0<α≤90°D.0≤α<90°
答案:2 悬赏:60 手机版
解决时间 2021-03-21 21:32
- 提问者网友:箛茗
- 2021-03-21 13:09
设α是等腰三角形的一个底角,则α的取值范围是A.0<α<90°B.α<90°C.0<α≤90°D.0≤α<90°
最佳答案
- 五星知识达人网友:从此江山别
- 2021-03-21 14:34
A解析分析:根据等腰三角形的性质及三角形的内角和定理进行分析得出0<2α<180°,求解即可.解答:等腰三角形的底角相等,一个底角是α,则另一底角也一定是α,根据三角形的内角和定理得三个内角的和是180°,因而两底角的和2α一定满足:0<2α<180°,则0°<α<90°.故选A.点评:本题主要考查了三角形的内角和定理及等腰三角形的性质的运用.
全部回答
- 1楼网友:冷風如刀
- 2021-03-21 16:05
这个解释是对的
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯