永发信息网

相关性分析有哪些方法

答案:1  悬赏:20  手机版
解决时间 2021-02-21 21:28
相关性分析有哪些方法
最佳答案
问题一:用于分析相关性的数学方法有哪些 做散点图,拟合线图,回归分析,然后对散布的点做线性拟合,如果是非线性相关,可以做二阶,三阶甚至多阶拟合。线性相关的情况下,可以计算相关系数,通过相关系数来判定。问题二:属性相关分析的方法有哪些 在机器学习、统计学、模糊逻辑和粗糙集等领域提出了许多属性相关分析的方法。属性相关分析的基本思想就是针对给定的数据集或概念,对相应属性进行计算已获得(描述属性相关性)的若干属性相关参量。问题三:如何分析两组数据的相关性 0.014就是是sig值,小于0.05就是显著相关问题四:如何用spss做相关性分析 偏相关
从菜单中选择:
分析
相关
偏相关...
选择两个或更多要为之计算偏相关的数值变量。
E 选择一个或多个数值控制变量。
还可以使用以下选项:
?? 显著性检验。您可以选择双尾概率或单尾概率。如果预先已知关联的方向,请选
择单尾。否则,请选择双尾。
?? 显示实际显著性水平。缺省情况下,将显示每个相关系数的概率和自由度。如果
取消选择此项,则使用单个星号标识显著性水平为0.05 的系数,使用两个星号
标识显著性水平为0.01 的系数,而不显示自由度。此设置同时影响偏相关矩阵
和零阶相关矩阵。
偏相关:选项
“偏相关性: 选项”对话框
统计量。可以选择以下方式中的一个或两个都选:
?? 均值和标准差。为每个变量显示。还显示具有非缺失值的个案数。
?? 零阶相关系数。显示所有变量(包括控制变量)之间简单相关的矩阵。
缺失值。您可以选择以下选项之一:
?? 按列表排除个案。将从所有计算中排除其任何变量(包括控制变量)具有缺失值
的个案。
?? 按对排除个案。对于偏相关所基于的零阶相关的计算,不使用其一对变量或其中一个
变量具有缺失值的个案。按对删除可以充分使用数据。但是,个案数可能随系数的
不同而不同。如果按对删除有效,则某个特定的偏相关系数的自由度是基于在任何
零阶相关计算中使用的最小个案数。问题五:常用的数据分析方法有哪些 对比分析法 1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。
因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。这个 还需要具体问题具体分析问题六:用EXCEL作的相关性分析数据,不知怎么分析? 5分打开原始数据表格,制作本实例的原始数据需要满足两组或两组以上的数据,结果将给出其中任意两项的相关系数
2、选择“工具”-“数据分析”-“描述统计”后,出现属性设置框,依次选择
输入区域:选择数据区域,注意需要满足至少两组数据。如果有储据标志,注意同时勾选下方“标志位于第一行”;
分组方式:指示输入区域中的数据是按行还是按列考虑,请根据原数据格式选择; 输出区域可以选择本表、新工作表组或是新工作簿;
3、点击“确定”即可看到生成的报表。问题七:kendall 和spearman三种相关分析方法的区别 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同 两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用 spearman或kendall相关 Pearson 相关复选项 积差相关计算连续变量或是等间距测度的变量间的相关分析 Kendall 复选项 等级相关 计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项 等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量 因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用 Spearman 或 Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项: Pearson Kendall's tau-b Spearman:Spearman spearman(斯伯曼/斯皮尔曼)相关系数 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法” 斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。 Kendall's相关系数 肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。适用这种方法的数据资料一般是采用等级评定的方法收集的,即让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物。等级评定法每个评价者对N件事物排出一个等级顺序,最小的......余下全文>>问题八:Pearson,Kendall和Spearman三种相关分析方法的异同 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同
两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述.
Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。
Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格;
计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。
计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用 spearman或kendall相关
Pearson 相关复选项 积差相关计算连续变量或是等间距测度的变量间的相关分析
Kendall 复选项 等级相关 计算分类变量间的秩相关,适用于合并等级资料
Spearman 复选项 等级相关计算斯皮尔曼相关,适用于连续等级资料
注:
1若非等间距测度的连续变量 因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关
2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用 Spearman 或 Kendall相关。
3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。
在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项:
Pearson
Kendall's tau-b
Spearman:Spearman
spearman(斯伯曼/斯皮尔曼)相关系数
斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法”
斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。
Kendall's相关系数
肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。适用这种方法的数据资料一般是采用等级评定的方法收集的,即让K个评委(被试)评定N件事物,或1个评委(被试)先后K次评定N件事物。等级评定法每个评价者对N件事物排出一个等级顺序,最小的......余下全文>>问题九:怎么选择相关性分析模型 20分选择相关性分析模型的方法:
1、看数穿类型和因变量的个数,多个因变量的用路径分析和结构方程,一个因变量的。
2、看数据类型,连续型的数据用线性和非线性,分类型的用逻辑回归,时间序列的用时间序列分析。
相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析。相关性不等于因果性,也不是简单的个性化,相关性所涵盖的范围和领域几乎覆盖了我们所见到的方方面面,相关性在不同的学科里面的定义也有很大的差异。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
运河区沧州隐酌火锅鸡(文艺店)地址是什么,有
电脑怎么GHOST系统到C盘?
马蹄圫地址在哪,我要去那里办事
天籁之音KTV在什么地方啊,我要过去处理事情
用平板划线法或稀释涂布平板法纯化大肠杆菌时
人类是两足动物吗
现在这个社会到底是亲情重要还是面子和亲情重
新概念洗衣四季花园店地址有知道的么?有点事
小学语文ABAB的词语有多少
著名史学家汤因比指出“我们必须抛弃自己的幻
竹天下文化广场地址有知道的么?有点事想过去
怎样克服密集恐惧症
肾康注射液与什么禁用
纹身纹脚后跟纹什么好
【欣喜若狂造句】用欣喜若狂造句比喻句、拟人
推荐资讯
天龙八部情侣网名大全
请问使用icfb打不开cadence怎么回事,是从别
我想找个能每年提醒我亲戚生日的软件,但我们
2005年年2.0君威油耗高吗?
慈溪阿迪达斯专卖地址有知道的么?有点事想过
中信银行的圆梦金用自己的pos机刷可以吗?
伙计现在到了当兵政审这关,可是我父亲是有案
中国上海和澳大利亚悉尼晚上看到的星星一样吗
自制奶茶的家常做法大全怎么做好吃视频
形容歌唱的好的词
下列烟草机械设备属于制丝生产线的是()。
【什么尽什么来的成语】什么尽什么来的成语有
正方形一边上任一点到这个正方形两条对角线的
阴历怎么看 ?