帮忙证明一下 sinZ和cosZ在复平面内是无界函数。(Z=x+iy) 谢谢!
答案:4 悬赏:0 手机版
解决时间 2021-03-28 19:55
- 提问者网友:却不属于对方
- 2021-03-28 09:04
帮忙证明一下 sinZ和cosZ在复平面内是无界函数。(Z=x+iy) 谢谢!
最佳答案
- 五星知识达人网友:山有枢
- 2021-03-28 09:56
cosz=cos(x+iy)
=cosx*cosiy-sinx*siniy
=cosx*chy-isinxshy
于是 |cosz|=根号(cos^2xsh^y+sin^2xsh^2y)
=根号[(1-sin^2x)ch^2y+sin^2xsh^2y]
=根号[ch^2y-sin^2x(ch^2y-sin^2y)]
=根号(ch^2y-sin^2x) >=根号(ch^2y-1)
所以 |cosz|>=根号(ch^2y-1) =|shy|=|[e^y-e^(-y)]/2|
而上式右边当y->无穷时无限变大 可证明 cosz是无界的
=cosx*cosiy-sinx*siniy
=cosx*chy-isinxshy
于是 |cosz|=根号(cos^2xsh^y+sin^2xsh^2y)
=根号[(1-sin^2x)ch^2y+sin^2xsh^2y]
=根号[ch^2y-sin^2x(ch^2y-sin^2y)]
=根号(ch^2y-sin^2x) >=根号(ch^2y-1)
所以 |cosz|>=根号(ch^2y-1) =|shy|=|[e^y-e^(-y)]/2|
而上式右边当y->无穷时无限变大 可证明 cosz是无界的
全部回答
- 1楼网友:舊物识亽
- 2021-03-28 12:09
不知
- 2楼网友:愁杀梦里人
- 2021-03-28 11:58
e^iz=cos(z)+i*sin(z);e^-iz=cos(z)-i*sin(z);
所以sin(z)=(e^iz-e^-iz)/2i;取z=ia,(a为实数)a趋于无穷大时,sin(z)从y轴方向趋于无穷,故sin(z)无界;
同理,cos(z)=(e^iz+e^-iz)/2;同于上述取法z=i*a,cos(z)从x轴方向趋于无穷,故无界。
所以sin(z)=(e^iz-e^-iz)/2i;取z=ia,(a为实数)a趋于无穷大时,sin(z)从y轴方向趋于无穷,故sin(z)无界;
同理,cos(z)=(e^iz+e^-iz)/2;同于上述取法z=i*a,cos(z)从x轴方向趋于无穷,故无界。
- 3楼网友:七十二街
- 2021-03-28 11:01
sinz=sinxcosiy+cosxsiniy=sinx*(e^y+e^-y)/2+cosx*i*(e^y-e^-y)/2,因为e^y无界,所以是无界函数
cosz=cosxcosiy-sinxsiniy=cosx*(e^y+e^-y)/2-sinx*i*(e^y-e^-y)/2也是无界函数
附:cosix=(e^x+e^-x)/2 sinix=i*(e^x-e^-x)/2
cosz=cosxcosiy-sinxsiniy=cosx*(e^y+e^-y)/2-sinx*i*(e^y-e^-y)/2也是无界函数
附:cosix=(e^x+e^-x)/2 sinix=i*(e^x-e^-x)/2
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯