求教离散数学:证明任意一个具有6个顶点的简单图或其补图一定包含一个三角形.
答案:2 悬赏:0 手机版
解决时间 2021-02-26 17:55
- 提问者网友:蓝琪梦莎
- 2021-02-25 19:13
求教离散数学:证明任意一个具有6个顶点的简单图或其补图一定包含一个三角形.
最佳答案
- 五星知识达人网友:煞尾
- 2021-02-25 20:21
证明:1)设6个顶点的图为G1,其补图为G2,则完全图G= G1∪G2.2)对于完全图G,v1与其他5个顶点相连,设图G1用红色线表示,G2用蓝色线表示,对于V1与其他顶点相连的5条线中,用两种颜色表示的情况下,必有一种颜色的线大于等于3,如图所示,假设红色线数大于等于3. 求教离散数学:证明任意一个具有6个顶点的简单图或其补图一定包含一个三角形.(图1)答案网 www.Zqnf.com 答案网 www.Zqnf.com 3)图示中三条边(V2,V3),(V3,V4),(V2,V4),任意一条边为红色,则必存在一个三角形,如果这三条边都不为红色,则为蓝色,必有这三条蓝色边形成一个三角形.
全部回答
- 1楼网友:一把行者刀
- 2021-02-25 21:59
回答的不错
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯