复合函数求积分
答案:2 悬赏:60 手机版
解决时间 2021-05-11 06:25
- 提问者网友:风月客
- 2021-05-10 09:22
复合函数求积分-有什么公式吗? 比如说 Y=sin3X 这个复合函数的积分怎么求?(本人文化程度极低-讲详细点)
最佳答案
- 五星知识达人网友:鸠书
- 2021-05-10 09:49
首先我提供一个比较通用的思路 对比系数再凑项!比如这题,sinX的原函数是-cosX,那么sin3X原函数就必然有-cos3X,但是(-cos3X)'=3sin3X,相差一个系数3,那么∫sin3X就是-cos3X/3+C.
上面适用于简单复合可以很容易思考出来,对于复杂的复合函数积分,可以采取换元。这个思路就是把复合函数求导反过来用。求导公式是F'(g(x))=F'g'(x),那么积分可以如下套公式。还是举Y=sin3X :设g=3X,注意此时dg=3dx(这个是关键一步,换元后dx要发生变化)那么原函数∫sinxdx就成为∫sin(g)d(g)/3.
而∫sin(g)d(g)/3=-cos(g)/3+C,此时把g=3X回代到-cos(g)/3+C,就得到cos3X/3+C
所以可以看出遇见简单复合或者容易看出原函数的可以凑微分,要是比较复杂或者没把握,可以用换元的办法。但是不管用很么办法有个基本前提是对一元函数积分公式要熟悉,那样遇见复合函数可以通过换元简化处理
全部回答
- 1楼网友:低血压的长颈鹿
- 2021-05-10 11:22
还原法能解决一些列的积分问题
但是仍然有一部分解决不了
就需要用到分部积分
证明很简单
根据求导公式
(uv)'=u'v+uv'
所以两边去积分,根据积分性质可得:
∫(uv)'dx=∫(u'v)dx+∫(uv')dx
变形∫(du·v)=uv-∫(u·dv)
举个例子吧
例如∫lnxdx
原式=∫(lnx×1)dx (lnx看作v,1看成du)
=x×lnx)-∫(1/x ·x)dx
=xlnx-x+c
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯