如图1,已知平行四边形PQRS是⊙O的内接四边形.
(1)求证:平行四边形PQRS是矩形.
(2)如图2,如果将题目中的⊙O改为边长为a的正方形ABCD,在AB、CD上分别取点P、S,连接PS,将Rt△SAP绕正方形中心O旋转180°得Rt△QCR,从而得四边形PQRS.试判断四边形RQRS能否变化成矩形?若能,设PA=x,SA=y,请说明x、y具有什么关系时,四边形PQRS是矩形;若不能,请说明理由.
如图1,已知平行四边形PQRS是⊙O的内接四边形.(1)求证:平行四边形PQRS是矩形.(2)如图2,如果将题目中的⊙O改为边长为a的正方形ABCD,在AB、CD上分
答案:4 悬赏:30 手机版
解决时间 2021-02-09 13:42
- 提问者网友:放下
- 2021-02-08 18:49
最佳答案
- 五星知识达人网友:慢性怪人
- 2019-02-20 02:41
(1)证明:∵平行四边形PQRS内接于⊙O,
∴∠Q+∠S=180°.
又∵∠Q=∠S,
∴∠Q=90°,
∴平行四边形PQRS是矩形.
(2)解:∵Rt△SAP与Rt△QCR关于点O对称,
∴QS与PR被O点平分,四边形PQRS为平行四边形.
若平行四边形PQRS变成矩形,不妨设∠QPS=90°.则∠BPQ+∠APS=90°.
又∵∠APS+∠ASP=90°,
∴∠BPQ=∠ASP,
∴△BPQ∽△ASP.
∴BP:BQ=AS:AP,
即 (a-x):(a-y)=y:x,
整理得(x-y)(x+y-a)=0,
∴x=y或x+y=a.
∴当x=y或x+y=a时,
可证得△BPQ∽△ASP,此时有∠QPS=90°,
从而得平行四边形PQRS是矩形.解析分析:(1)只需证明有一内角为90°即可.根据圆内接四边形对角互补及平行四边形对角相等易得结论.
(2)根据中心对称的定义易知四边形PQRS为平行四边形;若是矩形,则必有内角为直角,不妨设∠QPS=90°,此时
需满足△BPQ∽△ASP.即当BP:BQ=AS:AP时,四边形PQRS为矩形.点评:此题考查了矩形的判定方法及相似三角形的判定和性质,为开放探索型综合题,有一定难度.此类题常用分析法求解.
∴∠Q+∠S=180°.
又∵∠Q=∠S,
∴∠Q=90°,
∴平行四边形PQRS是矩形.
(2)解:∵Rt△SAP与Rt△QCR关于点O对称,
∴QS与PR被O点平分,四边形PQRS为平行四边形.
若平行四边形PQRS变成矩形,不妨设∠QPS=90°.则∠BPQ+∠APS=90°.
又∵∠APS+∠ASP=90°,
∴∠BPQ=∠ASP,
∴△BPQ∽△ASP.
∴BP:BQ=AS:AP,
即 (a-x):(a-y)=y:x,
整理得(x-y)(x+y-a)=0,
∴x=y或x+y=a.
∴当x=y或x+y=a时,
可证得△BPQ∽△ASP,此时有∠QPS=90°,
从而得平行四边形PQRS是矩形.解析分析:(1)只需证明有一内角为90°即可.根据圆内接四边形对角互补及平行四边形对角相等易得结论.
(2)根据中心对称的定义易知四边形PQRS为平行四边形;若是矩形,则必有内角为直角,不妨设∠QPS=90°,此时
需满足△BPQ∽△ASP.即当BP:BQ=AS:AP时,四边形PQRS为矩形.点评:此题考查了矩形的判定方法及相似三角形的判定和性质,为开放探索型综合题,有一定难度.此类题常用分析法求解.
全部回答
- 1楼网友:北城痞子
- 2020-05-26 23:58
我好好复习下
- 2楼网友:酒安江南
- 2019-12-02 11:38
和我的回答一样,看来我也对了
- 3楼网友:鸽屿
- 2020-07-18 16:50
C解析分析:化学变化中产生了新的物质,而和物理变化没产生新的物质,所以在判断一种变化过程是何种变化时,只有抓住化学变化和物理变化的区别,即有无新物质生成来进行细心地分析、判断即可.解答:A、电烤炉产生的热量是将电能转化为了热能,该转化中没有涉及到化学变化.故A错误;B、太阳灶烧水需要的热量是将太阳能转化为了内能,该转化中没有涉及到化学变化.故B错误;C、燃煤发电过程为煤燃烧产生了的热量转化为了电能,而煤的燃烧属于化学变化,即转化中涉及到化学变化.故C正确;D、风筝飞行需要的能量为借助了风能,该转化中没有涉及到化学变化.故D错误;故选C.点评:对于化学变化和物理变化的本质区别中新物质来说,关键是个“新”字.并且,这里的“新”是相对的,而不是指自然界中原来没有的物质才算是新物质,只要是相对于变化前的物质是新的(即和变化前的物质不是同种物质),就认为是有新物质生成.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯