勾股定理用出入相补法证明
答案:6 悬赏:40 手机版
解决时间 2021-11-22 12:59
- 提问者网友:我一贱你就笑
- 2021-11-21 19:29
勾股定理用出入相补法证明
最佳答案
- 五星知识达人网友:神也偏爱
- 2021-11-21 19:58
如图:
正方形ABCD边长为a ,点B在AG上,
正方形EFGB边长为b ,点C在EB上,
正方形EHIA边长为c ,点H在FG上,
设IJ⊥AG交于J,HI交AG于K,AE交CD于L ;
∵ EA=EH=a,EB=EF=b,∠EBA=∠EFH=90°,
∴ Rt△EFH≌Rt△EBA,∠1=∠2, FH=BA=a ,
∴ Rt△EFH中,
直角边FH=a,直角边EF=b,斜边EH=c ,
∵ ∠2=∠3=∠4=90°-∠EAB,∠1=∠2,
∴ ∠1=∠3,又EH=AI=a,∠EFH=∠AJI=90°,
∴ Rt△EFH≌Rt△AJI,JI=FH=a ,
∵ ∠5=∠3=90°-∠AIJ,∠3=∠4 ,
∴ ∠4=∠5,又DA=JI=a,∠ADL=∠IJK=90°,
∴ Rt△ADL≌Rt△IJK,
∵ ∠6=∠1=90°-∠EHF,∠1=∠2 ,
∴ ∠2=∠6,又EC=HB=b-a,∠LCE=∠KGH=90°
∴ Rt△LCE≌Rt△KGH ;
∴综上所述:正方形ABCD面积+正方形EFGB面积
=正方形EHIA面积;
即:a²+b²=c² ;
∴ 直角三角形中,两条直角边的平方和等于斜边的平方。
正方形ABCD边长为a ,点B在AG上,
正方形EFGB边长为b ,点C在EB上,
正方形EHIA边长为c ,点H在FG上,
设IJ⊥AG交于J,HI交AG于K,AE交CD于L ;
∵ EA=EH=a,EB=EF=b,∠EBA=∠EFH=90°,
∴ Rt△EFH≌Rt△EBA,∠1=∠2, FH=BA=a ,
∴ Rt△EFH中,
直角边FH=a,直角边EF=b,斜边EH=c ,
∵ ∠2=∠3=∠4=90°-∠EAB,∠1=∠2,
∴ ∠1=∠3,又EH=AI=a,∠EFH=∠AJI=90°,
∴ Rt△EFH≌Rt△AJI,JI=FH=a ,
∵ ∠5=∠3=90°-∠AIJ,∠3=∠4 ,
∴ ∠4=∠5,又DA=JI=a,∠ADL=∠IJK=90°,
∴ Rt△ADL≌Rt△IJK,
∵ ∠6=∠1=90°-∠EHF,∠1=∠2 ,
∴ ∠2=∠6,又EC=HB=b-a,∠LCE=∠KGH=90°
∴ Rt△LCE≌Rt△KGH ;
∴综上所述:正方形ABCD面积+正方形EFGB面积
=正方形EHIA面积;
即:a²+b²=c² ;
∴ 直角三角形中,两条直角边的平方和等于斜边的平方。
全部回答
- 1楼网友:洒脱疯子
- 2021-11-22 00:00
我们先画一个直角三角形,然后在最短的直角边旁向三角形那一边加上一个正方形,为了清楚起见,以红色表示。又在另一条直角边下面加上另一个正方形,以蓝色表示。接著,以斜边的长度画一个正方形,如图五(b)。我们打算证明红色和蓝色两个正方形面积之和,刚好等於以斜边画出来的正方形面积。
留意在图五(b)中,当加入斜边的正方形后,红色和蓝色有部分的地方超出了斜边正方形的范围。现在我将超出范围的部分分别以黄色、紫色和绿色表示出来。同时,在斜边正方形内,却有一些部分未曾填上颜色。现在依照图五(c)的方法,将超出范围的三角形,移入未有填色的地方。我们发现,超出范围的部分刚好填满未曾填色的地方!由此我们发现,图五(a)中,红色和蓝色两部分面积之和,必定等於图五(c)中斜边正方形的面积。由此,我们就证实了勾股定理。
参考资料:http://staff.ccss.edu.hk/jckleung/jiao_xue/py_thm/py_thm.html
- 2楼网友:思契十里
- 2021-11-21 22:20
看上图
三角形为直角三角形,以勾a为边的正方形为朱方,以股b为边的正方形为青方。以盈补虚,将朱方、青放并成玹方。依其面积关系有a^+b^=c^.由于朱方、青方各有一部分在玄方内,那一部分就不动了。
以勾为边的的正方形为朱方,以股为边的正方形为青方。以赢补虚,只要把图中朱方(a2)的I移至I′,青方的II移至II′,III移至III′,则刚好拼好一个以弦为边长的正方形(c2 ).由此便可证得a2+b2=c2
- 3楼网友:逐風
- 2021-11-21 22:13
假设AE,CD交点M.HI,AG交点N.AG上另一交点为O
将△ESM移至△ADM,△AOI移至△EFH,△OIN移至△HNG
则可得S四边形AEHI=S四边形ABCD+S四边形BEFG
所以:a2+b2=c2(在△ABE中看)
将△ESM移至△ADM,△AOI移至△EFH,△OIN移至△HNG
则可得S四边形AEHI=S四边形ABCD+S四边形BEFG
所以:a2+b2=c2(在△ABE中看)
- 4楼网友:往事埋风中
- 2021-11-21 20:22
证明思路如下:证明正方形AEHI的面积等于正方形EBGF的面积加上正方形ABCD的面积
证明过程:
1,证明最上面的两个小直角三角形全等
2,证明右下角的两个小直角三角形全等
3,证明最右边的大直角三角形和最下角的大直角三角形全等
4,证明面积相等即可
证明过程:
1,证明最上面的两个小直角三角形全等
2,证明右下角的两个小直角三角形全等
3,证明最右边的大直角三角形和最下角的大直角三角形全等
4,证明面积相等即可
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯