求一个高中数学立体几何专题
答案:2 悬赏:80 手机版
解决时间 2021-08-18 22:31
- 提问者网友:刺鸟
- 2021-08-18 00:17
RT 要一个现成的,供高三学习的。比如有些什么例题 考纲什么的 谢谢了 可以发到我邮箱star55@vip.qq.com
最佳答案
- 五星知识达人网友:掌灯师
- 2021-08-18 00:57
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
(1)判定直线在平面内的依据
(2)判定点在平面内的方法
公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。
(1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上
公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据
(2)判定若干个点共面的依据
推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据
(3)判断几何图形是平面图形的依据
推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何 直线与平面
空 间 二 直 线 平行直线
公理4:平行于同一直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线
空 间 直 线 和 平 面 位 置 关 系
(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点
(3)直线和平面平行——没有公共点
立体几何 直线与平面
直线与平面所成的角
(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角
三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面 两个平面平行 判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行
(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
两平面垂直 判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内
立体几何 多面体、棱柱、棱锥
多面体
定义 由若干个多边形所围成的几何体叫做多面体。
棱柱 斜棱柱:侧棱不垂直于底面的棱柱。
直棱柱:侧棱与底面垂直的棱柱。
正棱柱:底面是正多边形的直棱柱。
棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
球
到一定点距离等于定长或小于定长的点的集合。
欧拉定理
简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2
(1)判定直线在平面内的依据
(2)判定点在平面内的方法
公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。
(1)判定两个平面相交的依据
(2)判定若干个点在两个相交平面的交线上
公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据
(2)判定若干个点共面的依据
推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据
(2)判断若干个平面重合的依据
(3)判断几何图形是平面图形的依据
推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何 直线与平面
空 间 二 直 线 平行直线
公理4:平行于同一直线的两条直线互相平行
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线
空 间 直 线 和 平 面 位 置 关 系
(1)直线在平面内——有无数个公共点
(2)直线和平面相交——有且只有一个公共点
(3)直线和平面平行——没有公共点
立体几何 直线与平面
直线与平面所成的角
(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角
(2)一条直线垂直于平面,定义这直线与平面所成的角是直角
(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角
三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直
三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直
空间两个平面 两个平面平行 判定
性质
(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行
(2)垂直于同一直线的两个平面平行
(1)两个平面平行,其中一个平面内的直线必平行于另一个平面
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行
(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面
相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面
二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角
平面角是直角的二面角叫做直二面角
两平面垂直 判定
性质
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面
(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内
立体几何 多面体、棱柱、棱锥
多面体
定义 由若干个多边形所围成的几何体叫做多面体。
棱柱 斜棱柱:侧棱不垂直于底面的棱柱。
直棱柱:侧棱与底面垂直的棱柱。
正棱柱:底面是正多边形的直棱柱。
棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。
球
到一定点距离等于定长或小于定长的点的集合。
欧拉定理
简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2
全部回答
- 1楼网友:思契十里
- 2021-08-18 02:36
一般就是找垂直和平行,要有一定的模拟想象力,记住线和面,面和面平行和垂直的判定和性质,不用死记,大概都是那些,比如一个面有两条不平行的线与面外一条线垂直,这条线就垂直这个面,我离开高中有二十年了,这个性质也能记得,不是靠背,而是一种理解,对定理的一种感悟,还有就是多做几道经典的题,立体几何题比平面的少的多,而其中应用平面的知识又很多,所以立体几何在高中阶段题型并不多,除了平行垂直就是二面角!其它没什么!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯