函数f(x)=2sin(x-4/π)-sin2x的值域为
答案:3 悬赏:40 手机版
解决时间 2021-03-02 23:48
- 提问者网友:藍了天白赴美
- 2021-03-02 00:25
函数f(x)=2sin(x-4/π)-sin2x的值域为
最佳答案
- 五星知识达人网友:英雄的欲望
- 2021-03-02 00:51
f(x)=2sin(x-4/π) - sin2x
=2sin(x-π/4)- sin2x
=2sin(x-π/4)- cos(2x-π/2)
=2sin(x-π/4)- cos[2(x-π/4)]
=2sin(x-π/4)- 1+2sin^2(x-π/4)
=2sin^2(x-π/4)+ 2sin(x-π/4)- 1
=2[sin(x-π/4)+1/2]^2-3/2
-1 ≤ sin(x-π/4)≤ 1
-1/2 ≤ sin(x-π/4)+1/2 ≤ 3/2
0 ≤ [sin(x-π/4)+1/2]^2 ≤ 9/4
0 ≤ 2[sin(x-π/4)+1/2]^2 ≤ 9/2
-3/2 ≤ 2[sin(x-π/4)+1/2]^2-3/2 ≤ 3
值域【-3/2,3】
=2sin(x-π/4)- sin2x
=2sin(x-π/4)- cos(2x-π/2)
=2sin(x-π/4)- cos[2(x-π/4)]
=2sin(x-π/4)- 1+2sin^2(x-π/4)
=2sin^2(x-π/4)+ 2sin(x-π/4)- 1
=2[sin(x-π/4)+1/2]^2-3/2
-1 ≤ sin(x-π/4)≤ 1
-1/2 ≤ sin(x-π/4)+1/2 ≤ 3/2
0 ≤ [sin(x-π/4)+1/2]^2 ≤ 9/4
0 ≤ 2[sin(x-π/4)+1/2]^2 ≤ 9/2
-3/2 ≤ 2[sin(x-π/4)+1/2]^2-3/2 ≤ 3
值域【-3/2,3】
全部回答
- 1楼网友:青尢
- 2021-03-02 02:06
因为1-sin2x=(sinx-cosx)^2=2sin^2(x-
π/4),所以f(x)+1=2sin(x-π/4)-sin2x+1=2(sin(X-π/4)+0.5)^2-0.5
又sin(x-π/4)范围为[-1,1],所以f(x)+1值域为[-0.5,4]所以f(x)值域为[-1.5,3]
- 2楼网友:患得患失的劫
- 2021-03-02 01:19
f(x)=(1+cos2x+8sin^2x)/sin2x
f(x)=(1+2cosx²-1+8sin²x)/2sinxcosx
f(x)=(cosx²+4sin²x)/sinxcosx
f(x)=1/tgx+4tgx
tgx∈(-∞,+∞)
当tgx>0
1/tgx+4tgx最小值为4
当tgx<0
1/tgx+4tgx最大值为-4
值域为(-∞,-4]∪[4,+∞)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯