怎么证明 相似三角形的判定定理
答案:2 悬赏:60 手机版
解决时间 2021-03-11 14:18
- 提问者网友:山高云阔
- 2021-03-10 15:52
怎么证明 相似三角形的判定定理
最佳答案
- 五星知识达人网友:迷人又混蛋
- 2021-03-10 16:11
相似三角形的判定定理:
(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)
直角三角形相似的判定定理:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
相似三角形的性质定理:
(1)相似三角形的对应角相等.
(2)相似三角形的对应边成比例.
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.
(4)相似三角形的周长比等于相似比.
(5)相似三角形的面积比等于相似比的平方.
相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似).
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)
直角三角形相似的判定定理:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.
相似三角形的性质定理:
(1)相似三角形的对应角相等.
(2)相似三角形的对应边成比例.
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.
(4)相似三角形的周长比等于相似比.
(5)相似三角形的面积比等于相似比的平方.
相似三角形的传递性
如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2
全部回答
- 1楼网友:何以畏孤独
- 2021-03-10 16:32
一共有5种,严格来说是4种
1、用相似三角形的定义来证:三个角对应相等,三条边对应成比例(应为这个方法太烦,所以基本用不上,可以把它逆用成性质)
2、两个三角形如果有两角对应相等,那么这两个三角形相似(三角形中,两个角形等相当于三个角相等,你可以画两个角相等的三角形,然后量量它们的边是不是成比例,以前的书上有证明的方法,但这一届就没有了,所以不作介绍,中考肯定不会考的)
3、两个三角形如果有两条边对应成比例,并且这两条边的夹角对应相等,则两个三角形相似(这个方法相当于证全等三角形中的sas的方法,你也可以用量的方法去证实一下,如果图画的好的话一边误差不会很大。下面的几种方法你也可以通过测量来证实)
4、两个三角形如果三边对应成比例,那么这两个三角形相似(相当于证全等三角形中的sss)
5、在两个直角三角形中,如果一直角边和斜边对应成比例,那么这两个三角形相似(相当于证全等三角形中的hl)
1、用相似三角形的定义来证:三个角对应相等,三条边对应成比例(应为这个方法太烦,所以基本用不上,可以把它逆用成性质)
2、两个三角形如果有两角对应相等,那么这两个三角形相似(三角形中,两个角形等相当于三个角相等,你可以画两个角相等的三角形,然后量量它们的边是不是成比例,以前的书上有证明的方法,但这一届就没有了,所以不作介绍,中考肯定不会考的)
3、两个三角形如果有两条边对应成比例,并且这两条边的夹角对应相等,则两个三角形相似(这个方法相当于证全等三角形中的sas的方法,你也可以用量的方法去证实一下,如果图画的好的话一边误差不会很大。下面的几种方法你也可以通过测量来证实)
4、两个三角形如果三边对应成比例,那么这两个三角形相似(相当于证全等三角形中的sss)
5、在两个直角三角形中,如果一直角边和斜边对应成比例,那么这两个三角形相似(相当于证全等三角形中的hl)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯