1.已知三角形ABC的三边a,b,c是整数,其周长为20,面积是10√3,又三个内角A,B,C成等差数列.求该三角形三边的长.
2.若 cos²A+2msinA-2m-2<0 对任意的A恒成立,求常数m的取值范围.
3.已知三角形ABC的外接圆半径为R,且满足 2R(sin²A-sin²C)=(√2a-b)sinB,求三角形ABC面积的最大值 提示:sinAsinB= -1/2(cos(A+B)-cos(A-B))
1.已知三角形ABC的三边a,b,c是整数,其周长为20,面积是10√3,又三个内角A,B,C成等差数列.求该三角形三边
答案:1 悬赏:50 手机版
解决时间 2021-08-20 17:58
- 提问者网友:我是女神我骄傲
- 2021-08-19 18:24
最佳答案
- 五星知识达人网友:第四晚心情
- 2021-08-19 19:13
1,因为三边是整数,所以由面积公式S=abSIN(C)/2,知必有一个为60度或120度,而120不可能使A,B,C成等差,所以知必有一角为60度.不妨设这个角就是C,代回之前的面积公式可得:a*b=40.(1)
又a+b+c=20(2),由(1)可得整数组合:
1*40=40;不合题意
2*20=40;不合题意
4*10=40;C=6,这三条边构不成三角形,不合题意,
5*8=40;C=7,就是它了.
2,不妨设x=sinA,原方程化为:(x-m)^2+m(2-m)>0,由题意:m(2-m)>0,得0
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯