求解该高数题,
答案:1 悬赏:60 手机版
解决时间 2021-11-29 17:57
- 提问者网友:爱唱彩虹
- 2021-11-29 05:24
求解该高数题,
最佳答案
- 五星知识达人网友:深街酒徒
- 2021-11-29 05:56
绕x轴的旋转体体积=
∫(0,π/2)πy²dx
=πA²∫(0,π/2)sin²xdx
=(πA²/2)∫(0,π/2)2sin²xdx
=(πA²/2)∫(0,π/2)(1-cos2x)dx
=(πA²/2)[x-sin2x/2](0,π/2)
=(πA²/2)[π/2-0]
=π²A²/4
绕x轴的旋转体,x=0~π/2,y=0~A
y=Asinx,x=arcsin(y/A),dy=Acosxdx
体积=
∫(0,A)πx²dy
=π∫(0,π/2)x²Acosxdx
=Aπ∫(0,π/2)x²cosxdx
=Aπ∫(0,π/2)x²dsinx
=Aπ[x²sinx|(0,π/2)-∫(0,π/2)sinx.2xdx]
=Aπ[π²/4+2∫(0,π/2)xdcosx]
=Aπ³/4+2Aπ[xcosx|(0,π/2)-∫(0,π/2)cosxdx]
=Aπ³/4+2Aπ[-sinx|(0,π/2)]
=Aπ³/4+2Aπ[-1|
=Aπ³/4-2Aπ
π²A²/4=Aπ³/4-2Aπ
πA/4=π²/4-2
πA=π²-8
A=π-8/π
∫(0,π/2)πy²dx
=πA²∫(0,π/2)sin²xdx
=(πA²/2)∫(0,π/2)2sin²xdx
=(πA²/2)∫(0,π/2)(1-cos2x)dx
=(πA²/2)[x-sin2x/2](0,π/2)
=(πA²/2)[π/2-0]
=π²A²/4
绕x轴的旋转体,x=0~π/2,y=0~A
y=Asinx,x=arcsin(y/A),dy=Acosxdx
体积=
∫(0,A)πx²dy
=π∫(0,π/2)x²Acosxdx
=Aπ∫(0,π/2)x²cosxdx
=Aπ∫(0,π/2)x²dsinx
=Aπ[x²sinx|(0,π/2)-∫(0,π/2)sinx.2xdx]
=Aπ[π²/4+2∫(0,π/2)xdcosx]
=Aπ³/4+2Aπ[xcosx|(0,π/2)-∫(0,π/2)cosxdx]
=Aπ³/4+2Aπ[-sinx|(0,π/2)]
=Aπ³/4+2Aπ[-1|
=Aπ³/4-2Aπ
π²A²/4=Aπ³/4-2Aπ
πA/4=π²/4-2
πA=π²-8
A=π-8/π
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯