如图,已知梯形ABCD中AD∥BC,AB=AD=DC=4,对角线AC⊥AB.求梯形ABCD的周长.
答案:2 悬赏:80 手机版
解决时间 2021-01-23 23:55
- 提问者网友:雾里闻花香
- 2021-01-23 05:31
如图,已知梯形ABCD中AD∥BC,AB=AD=DC=4,对角线AC⊥AB.求梯形ABCD的周长.
最佳答案
- 五星知识达人网友:廢物販賣機
- 2021-01-23 05:45
解:∵AD=DC,
∴∠DAC=∠DCA(1分)
∵AD∥BC,
∴∠DAC=∠ACB(1分)
∴∠DCA=∠ACB(1分)
∵AD∥BC,AB=DC,
∴∠B=∠BCD=2∠ACB,(1分)
∵AC⊥AB,
∴∠B+∠BCA=90°,
即3∠BCA=90°,
∴∠BCA=30°,(1分)
∴BC=2AB(1分)
∵AB=AD=DC=4,
∴BC=8,(1分)
∴梯形的周长=20.(1分)解析分析:根据等腰梯形在同一底上的两个角相等和角平分线的定义,求得∠ABC=60°,∠ACB=∠CD=30°.根据30°的直角三角形的性质和等腰三角形的性质得到梯形的各边之间的关系,求得梯形的各边的长相加即可.点评:本题考查与梯形有关的问题,能够根据角的度数发现30°的直角三角形和等腰三角形,从而找到各边之间的关系,再进行计算.
∴∠DAC=∠DCA(1分)
∵AD∥BC,
∴∠DAC=∠ACB(1分)
∴∠DCA=∠ACB(1分)
∵AD∥BC,AB=DC,
∴∠B=∠BCD=2∠ACB,(1分)
∵AC⊥AB,
∴∠B+∠BCA=90°,
即3∠BCA=90°,
∴∠BCA=30°,(1分)
∴BC=2AB(1分)
∵AB=AD=DC=4,
∴BC=8,(1分)
∴梯形的周长=20.(1分)解析分析:根据等腰梯形在同一底上的两个角相等和角平分线的定义,求得∠ABC=60°,∠ACB=∠CD=30°.根据30°的直角三角形的性质和等腰三角形的性质得到梯形的各边之间的关系,求得梯形的各边的长相加即可.点评:本题考查与梯形有关的问题,能够根据角的度数发现30°的直角三角形和等腰三角形,从而找到各边之间的关系,再进行计算.
全部回答
- 1楼网友:鸠书
- 2021-01-23 07:09
和我的回答一样,看来我也对了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯
正方形一边上任一点到这个正方形两条对角线的 |
阴历怎么看 ? |