为什么f(x+1)与f(x-1)都是奇函数时,f(x)关于(1,0)中心对称?
答案:1 悬赏:0 手机版
解决时间 2021-11-14 08:38
- 提问者网友:不爱我么
- 2021-11-14 02:40
为什么f(x+1)与f(x-1)都是奇函数时,f(x)关于(1,0)中心对称?
最佳答案
- 五星知识达人网友:佘樂
- 2021-11-14 03:38
设g(x)=f(x+1),h(x)=f(x-1)
依题意知:g(x)和h(x)为奇函数
所以g(-x)+g(x)=f(x+1)+f(-x+1)=0……(1)
h(-x)+h(x)=f(x-1)+f(-x-1)=0……(2)
设f(x)上任意一点(a,b)关于(1,0)的对称点(h,k)
b=f(a)
h=2-a,k=-f(a)
需要证明k=f(h)=-f(a)=f(2-a)
及f(a)+f(2-a)=0……(3)
设x+1=a,x=a-1,-x+1=-(a-1)+1=2-a
由(1)知:f(a)+f(2-a)=0,所以(3)式成立
那么说明f(x)上的任意一点(a,b)关于(1,0)的对称点(h,k)也在函数y=f(x)上
即f(x)关于(1,0)中心对称
依题意知:g(x)和h(x)为奇函数
所以g(-x)+g(x)=f(x+1)+f(-x+1)=0……(1)
h(-x)+h(x)=f(x-1)+f(-x-1)=0……(2)
设f(x)上任意一点(a,b)关于(1,0)的对称点(h,k)
b=f(a)
h=2-a,k=-f(a)
需要证明k=f(h)=-f(a)=f(2-a)
及f(a)+f(2-a)=0……(3)
设x+1=a,x=a-1,-x+1=-(a-1)+1=2-a
由(1)知:f(a)+f(2-a)=0,所以(3)式成立
那么说明f(x)上的任意一点(a,b)关于(1,0)的对称点(h,k)也在函数y=f(x)上
即f(x)关于(1,0)中心对称
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯