化简cos^8(π/8)+cos^8(3π/8)+cos^8(5π/8)+cos^8(7π/8)
化简cos^8(π/8)+cos^8(3π/8)+cos^8(5π/8)+cos^8(7π/8)
答案:1 悬赏:80 手机版
解决时间 2021-02-23 11:32
- 提问者网友:不爱我么
- 2021-02-22 12:37
最佳答案
- 五星知识达人网友:平生事
- 2021-02-22 12:43
cos^2(π/8)+sin^2(π/8)=1
2cosπ/8sinπ/8=sin(π/4)=√2/2
2cos^2(π/8)sin^2(π/8)=1/4
cos^4(π/8)+sin^4(π/8)
=(cos^2(π/8)+sin^2(π/8))^2-2cos^2(π/8)sin^2(π/8)
=1-1/4
=3/4
cos^8(π/8)+sin^8(π/8)
=(cos^4(π/8)+sin^4(π/8))^2-2cos^4(π/8)sin^4(π/8)
=9/16-1/32
=17/32
cos^8(π/8)+cos^8(3π/8)+cos^8(5π/8)+cos^8(7π/8)
=cos^8(π/8)+cos^8(π/2-π/8)+cos^8(π/2+π/8)+cos^8(π-π/8)
=cos^8(π/8)+sin^8(π/8)+sin^8(π/8)+cos^8(π/8)
=2[cos^8(π/8)+sin^8(π/8)]
=2*17/32=17/16
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯