拜托各位数学高手,帮帮学渣一把,高分悬赏,答案标准另外追加高分!!!
高二数学难题求大神解答
答案:1 悬赏:0 手机版
解决时间 2021-04-06 01:15
- 提问者网友:活着好累
- 2021-04-05 04:35
最佳答案
- 五星知识达人网友:罪歌
- 2021-04-05 05:16
(1)证明
∵PH是四棱锥P-ABCD的高.
∴AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.
∴AC⊥平面PBD.
故平面PAC⊥平面PBD
(2)∵ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=√6
∴HA=HB=√3
∵∠APB=∠ADB=60°
∴PA=PB=√6
HD=HC=1.
可得PH=√3
等腰梯形ABCD的面积为S=1/2*AC*BD=2+√3
所以四棱锥P-ABCD的体积为
V=1/3*(2+√3)*√3
=2√3/3+1
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
∵PH是四棱锥P-ABCD的高.
∴AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.
∴AC⊥平面PBD.
故平面PAC⊥平面PBD
(2)∵ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=√6
∴HA=HB=√3
∵∠APB=∠ADB=60°
∴PA=PB=√6
HD=HC=1.
可得PH=√3
等腰梯形ABCD的面积为S=1/2*AC*BD=2+√3
所以四棱锥P-ABCD的体积为
V=1/3*(2+√3)*√3
=2√3/3+1
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯