高中数学集合知识框架图(人教版)
答案:2 悬赏:50 手机版
解决时间 2021-02-26 23:32
- 提问者网友:不爱我么
- 2021-02-26 01:13
高中数学集合知识框架图(人教版)
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-02-26 02:13
一、《集合与函数》 内容子交并补集,还有幂指对函数.性质奇偶与增减,观察图象最明显. 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓. 指数与对数函数,两者互为反函数.底数非1的正数,1两边增减变故. 函数定义域好求.分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集. 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域. 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负. 二、《立体几何》 点线面三位一体,柱锥台球为代表.距离都从点出发,角度皆为线线成. 垂直平行是重点,证明须弄清概念.线线线面和面面、三对之间循环现. 方程思想整体求,化归意识动割补.计算之前须证明,画好移出的图形. 立体几何辅助线,常用垂线和平面.射影概念很重要,对于解题最关键. 异面直线二面角,体积射影公式活.公理性质三垂线,解决问题一大片. 三、《平面解析几何》 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范. 笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径. 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想. 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判. 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求. 解析几何是几何,得意忘形学不活.图形直观数入微,数学本是数形学.======以下答案可供参考======供参考答案1:1.集合、简易逻辑 理解集合、子集、补集、交集、并集的概念; 了解空集和全集的意义; 了解属于、包含、相等关系的意义; 掌握有关的术语和符号,并会用它们正确表示一些简单的集合。 理解逻辑联结词或、且、非的含义; 理解四种命题及其相互关系;掌握充要条件的意义。
全部回答
- 1楼网友:摆渡翁
- 2021-02-26 03:06
和我的回答一样,看来我也对了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯