如图,五边形A,B,C,D,E既外接于圆,又内切于圆。
解决时间 2021-04-27 09:10
- 提问者网友:一抹荒凉废墟
- 2021-04-26 23:38
如图,五边形A,B,C,D,E既外接于圆,又内切于圆。
将五切点隔位相连,如此得到五个交点A3,B3,C3,D3,E3.证明:此五点共圆。
最佳答案
- 五星知识达人网友:十年萤火照君眠
- 2021-04-27 00:09
四边形ABCD中
由切点弦及同弦所对的圆周角
知△B3D2A∽△C3A2D
∴(B3A)/(DC3)=(D2A)/(DA2)=(AC2)/(DA2)
又∵(AC2)/(AE3)=(siC4∠AE3C2)/(siC4∠AC2E3)=(siC4∠DE3A2)/(siC4∠DA2E3)=(DA2)/(E3D)
∴(AC2)/(DA2)=(AE3)/(E3D)
∴(B3A)/(DC3)=(AE3)/(E3D)
即:(B3A)/(AE3)=(DC3)/(E3D)=a
(CB3)/(D3C)=a
(C3B)/(BA3)=a
(A3E)/(ED3)=a
(ED3)/(A3E)=a
∴(B3A)/(AE3)=(DC3)/(E3D)= (CB3)/(D3C)= (C3B)/(BA3)= (A3E)/(ED3)= (ED3)/(A3E)=a=1
∴B3A=AE3,C3B=BA3,D3C=CB3,E3D=DC3,A3E=ED3.
∵△B3D2A∽△C3A2D
∴E4B3=E4C3.
同理:A4C3=A4D3,B4D3=B4E3,C4E3=C4A3,D4A3=D4B3
在四边形AKA4B4中由引理(2)得:B3,C3,D3,E3共圆.
同理其它四组四点共圆.
∴B3,C3,D3,E3,A3共圆.
全部回答
四边形ABCD中
由切点弦及同弦所对的圆周角可知△B3D2A∽△C3A2D
∴(B3A)/(DC3)=(D2A)/(DA2)=(AC2)/(DA2)
又∵(AC2)/(AE3)=(sin∠AE3C2)/(sin∠AC2E3)=(sin∠DE3A2)/(sin∠DA2E3)=(DA2)/(E3D)
∴(AC2)/(DA2)=(AE3)/(E3D)
∴(B3A)/(DC3)=(AE3)/(E3D)
即:(B3A)/(AE3)=(DC3)/(E3D)=a
(CB3)/(D3C)=a
(C3B)/(BA3)=a
(A3E)/(ED3)=a
(ED3)/(A3E)=a
∴(B3A)/(AE3)=(DC3)/(E3D)= (CB3)/(D3C)= (C3B)/(BA3)= (A3E)/(ED3)= (ED3)/(A3E)=a=1
∴B3A=AE3,C3B=BA3,D3C=CB3,E3D=DC3,A3E=ED3
∵△B3D2A∽△C3A2D
∴E4B3=E4C3
同理:A4C3=A4D3
B4D3=B4E3
C4E3=C4A3
D4A3=D4B3
在四边形AKA4B4中由(2)得:B3,C3,D3,E3共圆
同理其它四组四点共圆.
∴B3,C3,D3,E3,A3共圆.
- 2楼网友:深街酒徒
- 2021-04-27 04:21
∠D2AB3=∠A2DC3,∠AD2B3=∠D2E2A2=∠DA2C3
所以∠D2B3A=∠A2C3D ==> ∠E4B3C3=∠E4C3B3 ==>E4B3=E4C3
同理A4C3=A4D3,B4D3=B4E3,C4E3=C4A3,D4A3=D4B3
△AB3D2∽△DC3A2 ==> AB3/AD2=DC3/DA2=DC3/DB2
△DC3B2∽△CD3E2 ==> DC3/DB2=CD3/CE2=CD3/CA2
△CD3A2∽△AE3C2 ==> CD3/CA2=AE3/AC2=AE3/AD2
所以AB3/AD2=AE3/AD2 ==> AB3=AE3
同理BC3=BA3,CD3=CB3,DE3=DC3,EA3=ED3
其他看楼上
- 3楼网友:街头电车
- 2021-04-27 03:05
表示第五排没看懂
- 4楼网友:纵马山川剑自提
- 2021-04-27 01:45
楼上的真的很强 写这么多字~~佩服佩服楼主你就把分给他就是了 如果可以的话 加我一个
我要举报
大家都在看
推荐资讯