求函数的值域的方法?
答案:4 悬赏:20 手机版
解决时间 2021-01-04 01:04
- 提问者网友:不要迷恋哥
- 2021-01-03 03:26
包括高中的所有简单函数值域?!!!!急~~~!!!
最佳答案
- 五星知识达人网友:怙棘
- 2021-01-03 04:27
求 函数值域的几种常见方法
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a 0)的定义域为R,值域为R;
反比例函数 的定义域为{x|x 0},值域为{y|y 0};
二次函数 的定义域为R,
当a>0时,值域为{ };当a<0时,值域为{ }.
例1.求下列函数的值域
① y=3x+2(-1 x 1) ② ③ ④
解:①∵-1 x 1,∴-3 3x 3,
∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]
②∵ ∴
即函数 的值域是 { y| y 2}
③
④当x>0,∴ = ,
当x<0时, =-
∴值域是 [2,+ ).(此法也称为配方法)
函数 的图像为:
2.二次函数比区间上的值域(最值):
例2 求下列函数的最大值、最小值与值域:
① ;
解:∵ ,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y -3 }.
②∵顶点横坐标2 [3,4],
当x=3时,y= -2;x=4时,y=1;
∴在[3,4]上, =-2, =1;值域为[-2,1].
③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上, =-2, =1;值域为[-2,1].
④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,
∴在[0,1]上, =-3, =6;值域为[-3,6].
注:对于二次函数 ,
⑴若定义域为R时,
①当a>0时,则当 时,其最小值 ;
②当a<0时,则当 时,其最大值 .
⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,再比较 的大小决定函数的最大(小)值.
②若 [a,b],则[a,b]是在 的单调区间内,只需比较 的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数 的值域
方法一:去分母得 (y-1) +(y+5)x-6y-6=0 ①
当 y11时 ∵x?R ∴△=(y+5) +4(y-1)×6(y+1) 0
由此得 (5y+1) 0
检验 时 (代入①求根)
∵2 ? 定义域 { x| x12且 x13} ∴
再检验 y=1 代入①求得 x=2 ∴y11
综上所述,函数 的值域为 { y| y11且 y1 }
方法二:把已知函数化为函数 (x12)
∵ x=2时 即
说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数 的值域
解:设 则 t 0 x=1-
代入得
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式: ,画出它的图象(下图),由图象可知,函数的值域是{y|y 3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+ ]. 如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.
三、练习:
1 ;
解:∵x 0, ,∴y 11.
另外,此题利用基本不等式解更简捷:
2
∵2 -4x+3>0恒成立(为什么?),
∴函数的定义域为R,
∴原函数可化为2y -4yx+3y-5=0,由判别式 0,
即16 -4×2y(3y-5)=-8 +40y 0(y 0),
解得0 y 5,又∵y 0, ∴0 注意:利用判别式法要考察两端点的值是否可以取到.
3 求函数的值域
① ; ②
解:①令 0,则 ,
原式可化为 ,
∵u 0,∴y ,∴函数的值域是(- , ].
②解:令 t=4x- 0 得 0 x 4
在此区间内 (4x- ) =4 ,(4x- ) =0
∴函数 的值域是{ y| 0 y 2}
小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.
作业:求函数y= 值域
解:∵ ,
∴函数的定义域R,原式可化为 ,
整理得 ,
若y=1,即2x=0,则x=0;
若y 1,∵ R,即有 0,
∴ ,解得 且 y 1.
综上:函数是值域是{y| }.
1.直接法:利用常见函数的值域来求
一次函数y=ax+b(a 0)的定义域为R,值域为R;
反比例函数 的定义域为{x|x 0},值域为{y|y 0};
二次函数 的定义域为R,
当a>0时,值域为{ };当a<0时,值域为{ }.
例1.求下列函数的值域
① y=3x+2(-1 x 1) ② ③ ④
解:①∵-1 x 1,∴-3 3x 3,
∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]
②∵ ∴
即函数 的值域是 { y| y 2}
③
④当x>0,∴ = ,
当x<0时, =-
∴值域是 [2,+ ).(此法也称为配方法)
函数 的图像为:
2.二次函数比区间上的值域(最值):
例2 求下列函数的最大值、最小值与值域:
① ;
解:∵ ,∴顶点为(2,-3),顶点横坐标为2.
①∵抛物线的开口向上,函数的定义域R,
∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y -3 }.
②∵顶点横坐标2 [3,4],
当x=3时,y= -2;x=4时,y=1;
∴在[3,4]上, =-2, =1;值域为[-2,1].
③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上, =-2, =1;值域为[-2,1].
④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,
∴在[0,1]上, =-3, =6;值域为[-3,6].
注:对于二次函数 ,
⑴若定义域为R时,
①当a>0时,则当 时,其最小值 ;
②当a<0时,则当 时,其最大值 .
⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,再比较 的大小决定函数的最大(小)值.
②若 [a,b],则[a,b]是在 的单调区间内,只需比较 的大小即可决定函数的最大(小)值.
注:①若给定区间不是闭区间,则可能得不到最大(小)值;
②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.
3.判别式法(△法):
判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论
例3.求函数 的值域
方法一:去分母得 (y-1) +(y+5)x-6y-6=0 ①
当 y11时 ∵x?R ∴△=(y+5) +4(y-1)×6(y+1) 0
由此得 (5y+1) 0
检验 时 (代入①求根)
∵2 ? 定义域 { x| x12且 x13} ∴
再检验 y=1 代入①求得 x=2 ∴y11
综上所述,函数 的值域为 { y| y11且 y1 }
方法二:把已知函数化为函数 (x12)
∵ x=2时 即
说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.
4.换元法
例4.求函数 的值域
解:设 则 t 0 x=1-
代入得
5.分段函数
例5.求函数y=|x+1|+|x-2|的值域.
解法1:将函数化为分段函数形式: ,画出它的图象(下图),由图象可知,函数的值域是{y|y 3}.
解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+ ]. 如图
两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.
说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.
三、练习:
1 ;
解:∵x 0, ,∴y 11.
另外,此题利用基本不等式解更简捷:
2
∵2 -4x+3>0恒成立(为什么?),
∴函数的定义域为R,
∴原函数可化为2y -4yx+3y-5=0,由判别式 0,
即16 -4×2y(3y-5)=-8 +40y 0(y 0),
解得0 y 5,又∵y 0, ∴0 注意:利用判别式法要考察两端点的值是否可以取到.
3 求函数的值域
① ; ②
解:①令 0,则 ,
原式可化为 ,
∵u 0,∴y ,∴函数的值域是(- , ].
②解:令 t=4x- 0 得 0 x 4
在此区间内 (4x- ) =4 ,(4x- ) =0
∴函数 的值域是{ y| 0 y 2}
小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.
作业:求函数y= 值域
解:∵ ,
∴函数的定义域R,原式可化为 ,
整理得 ,
若y=1,即2x=0,则x=0;
若y 1,∵ R,即有 0,
∴ ,解得 且 y 1.
综上:函数是值域是{y| }.
全部回答
- 1楼网友:鸽屿
- 2021-01-03 06:42
关于函数的值域(最值)的解决方法,有很多文章介绍了,如判别式法,实根分布法等,判别式法历来不能完全解决这个函数的值域(最值)问题,实根分布法比较复杂。我们应用函数的性质,可以完整解决分式函数的值域问题。
下面对和先讨论函数的性质。
性质1 若,函数在区间和区间是单调增函数;在区间 和区间是单调减函数。
性质1的证明从略。
性质2 若,函数在区间和区间上都是增函数。
性质2的证明从略。
例1 分别求函数在指定区间上的值域
(1) (2) (3)
解:(1)利用均值不等式,
,
当时,,
所以,函数的值域是。
(2)由(1)的解答过程,因为,所以均值不等式就失去了作用。我们可以用函数的单调性解决这个问题。
因为函数在区间上是增函数,当时,,所以,函数的值域是。
(3)把区间分割成两部分:和,由性质1知,函数在区间和上分别是减函数、增函数,
那么这个函数在两个区间上的值域分别是和,
所以函数在区间上的值域是。
例2 求下列函数的值域
(1) (2)
解:(1)用部分分式法,,就化归为例1(1)的情形。
(2)用换元法把分母上的式子转换为一个单项式。
设,则,代入函数得
,其中,当即时,函数取最小值。所以,原函数的值域为
例3 求函数的值域。
解:因为①
设其中,且,
那么,且
把 代入①式,得
如果
如果
当时,
从而
当时,且
从而或
所以,原函数的值域是
例4 求函数的值域。
解:
设代入原函数得
由于
所以
例5 求函数的值域。
解:
因为,函数是增函数,
原函数的值域是
- 2楼网友:妄饮晩冬酒
- 2021-01-03 05:32
其没有固定的方法和模式。但常用方法有: (1)直接法:从变量x的范围出发,推出y=f(x)的取值范围; (2)配方法:配方法是求“二次函数类”值域的基本方法,形如f(x)=af^(x) bf(x) c的函数的值域问题,均可使用配方法 (3)反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过反函数的定义域,得到原函数的值域。形如y=cx d/ax b(a≠0)的函数均可使用反函数法。此外,这种类型的函数值域也可使用“分离常数法”求解。 (4)换元法:运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。形如y=ax b±根号cx d(a、b、c、d均为常数,且a≠0)的函数常用此法求解。举些例子吧! (1)y=4-根号3 2x-x^ 此题就得用配方法:由3 2x-x^≥0,得-1≤x≤3. ∵y=4-根号-1(x-1)^ 4,∴当x=1时,ymin=4-2=2. 当x=-1或3时,ymax=4. ∴函数值域为[2,4] (2)y=2x 根号1-2x 此题用换元法: 令t=根号1-2x(t≥0),则x=1-t^/2 ∵y=-t^ t 1=-(t-1/2)^ 5/4, ∵当t=1/2即x=3/8时,ymax=5/4,无最小值. ∴函数值域为(-∞,5/4) (3)y=1-x/2x 5 用分离常数法 ∵y=-1/2 7/2/2x 5, 7/2/2x 5≠0, ∴y≠-1/2
- 3楼网友:woshuo
- 2021-01-03 04:54
函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯