怎么求耐克函数的单调性?
答案:2 悬赏:50 手机版
解决时间 2021-01-25 02:54
- 提问者网友:几叶到寒
- 2021-01-24 22:14
怎么求耐克函数的单调性?
最佳答案
- 五星知识达人网友:撞了怀
- 2021-01-24 23:05
一般地:函数f(x)=ax+b/x,(a>0,b>0)叫做双钩函数。
该函数是奇函数,图象关于原点对称。位于第一、三象限。
当x>0时,由基本不等式可得:y ≥2√ab
当且仅当ax=b/x,即x=√(b/a)时取等号。
故其顶点坐标为(√(b/a),2√ab),图象在(0,√(b/a))上是单调递减的,在(√(b/a),+∝)上是单调递增
同理:当x<0时,由基本不等式可得:y≤-2√ab
当且仅当ax=b/x,即x=-√(b/a)时取等号。
故其顶点坐标为(-√(b/a),-2√ab),
图象在(-∝,-√(b/a))上是单调递增,
在(-√(b/a),0)上是单调递减的.
当a<0,b<0 时可转化为a>0,b>0的情况
该函数是奇函数,图象关于原点对称。位于第一、三象限。
当x>0时,由基本不等式可得:y ≥2√ab
当且仅当ax=b/x,即x=√(b/a)时取等号。
故其顶点坐标为(√(b/a),2√ab),图象在(0,√(b/a))上是单调递减的,在(√(b/a),+∝)上是单调递增
同理:当x<0时,由基本不等式可得:y≤-2√ab
当且仅当ax=b/x,即x=-√(b/a)时取等号。
故其顶点坐标为(-√(b/a),-2√ab),
图象在(-∝,-√(b/a))上是单调递增,
在(-√(b/a),0)上是单调递减的.
当a<0,b<0 时可转化为a>0,b>0的情况
全部回答
- 1楼网友:山君与见山
- 2021-01-24 23:28
虽然我很聪明,但这么说真的难到我了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯