有关三角函数的公式 全部
- 提问者网友:遮云壑
- 2021-05-22 15:59
- 五星知识达人网友:山有枢
- 2021-05-22 17:35
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
平方关系:(sinx)^2+(cosx)^2=1
(secx)^2-(tanx)^2=1
(cscx)^2-(cotx)^2=1
二倍角公式
sin2A=2sinA·cosA
cos2A=2(cosx)^2-1=1-2(sinx)^2
tan2A=(2tanA)/(1-tan^2(A))
半角公式 sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
sin^2(A/2)=[1-cos(A)]/2
cos^2(A/2)=[1+cos(A)]/2
tan(A/2)=(1-cosA/sinA=sinA/(1+cosA)
两角和公式
两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
和差化积 sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2]
和差化积公式
sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差 sinαsinβ=-[cos(α+β)-cos(α-β)] /2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)} }