平面几何欧拉定理是怎么证明的?画图
平面几何欧拉定理是怎么证明的?画图
答案:1 悬赏:40 手机版
解决时间 2021-03-02 07:54
- 提问者网友:绫月
- 2021-03-01 10:15
最佳答案
- 五星知识达人网友:行雁书
- 2021-03-01 11:34
设三角形的外接圆半径为R,内切圆半径为r,外心与内心的距离为d,则d^2=R^2-2Rr.
证明
O、I分别为⊿ABC的外心与内心. 连AI并延长交⊙O于点D,由AI平分ÐBAC,故D为弧BC的中点. 连DO并延长交⊙O于E,则DE为与BC垂直的⊙O的直径. 由圆幂定理知,R2-d2=(R+d)(R-d)=IA·ID.(作直线OI与⊙O交于两点,即可用证明) 但DB=DI(可连BI,证明ÐDBI=ÐDIB得), 故只需证2Rr=IA·DB,即2R∶DB=IA∶r 即可. 而这个比例式可由⊿AFI∽⊿EBD证得.故得R^2-d^2=2Rr,即证.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯