设F(x)={x/(x-2)}∫f(t)dt(积分上限是x,下限是2),其中f(x)是连续函数,则limF(x)x趋向于2=?
设F(x)={x/(x-2)}∫f(t)dt(积分上限是x,下限是2),其中f(x)是连续函数,则limF(x)x趋向于
答案:1 悬赏:0 手机版
解决时间 2021-05-09 03:54
- 提问者网友:太高姿态
- 2021-05-08 03:45
最佳答案
- 五星知识达人网友:未来江山和你
- 2021-05-08 04:25
F(x)={x/(x-2)}∫(2->x)f(t)dt
lim(x->2)F(x)
=lim(x->2) x∫(2->x)f(t)dt /(x-2) (0/0)
=lim(x->2) xf(x) +∫(2->x)f(t)dt
=2f(2)
再问: 怎么推出lim(x->2) xf(x) +∫(2->x)f(t)dt,这里没明白。
再答: =lim(x->2) x∫(2->x)f(t)dt /(x-2) (0/0) 分母->0, 分子->0 =lim(x->2) [x∫(2->x)f(t)dt]' /(x-2)' =lim(x->2) (xf(x) +∫(2->x)f(t)dt)/1 =lim(x->2) (xf(x) +∫(2->x)f(t)dt) =2f(2)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯