当n为大于2的整数时,证明n×n⁴-5n³+4n能被120整除 要过程
答案:1 悬赏:10 手机版
解决时间 2021-05-10 14:06
- 提问者网友:放下
- 2021-05-10 04:22
当n为大于2的整数时,证明n×n⁴-5n³+4n能被120整除 要过程
最佳答案
- 五星知识达人网友:青灯有味
- 2021-05-10 05:51
证明:n^5-5n^3+4n
=n^5-n^3-4n^3+4n
=n^3*(n^2-1)-4n(n^2-1)
=n*(n^2-1)(n^2-4)
=(n-2)(n-1)n(n+1)(n+2)
五个连续的整数必有一个能被5整除,所以上式能被5整除。
五个连续的整数至少有一个能被3整除,所以上式能被3整除。
五个连续的整数至少有一个能被4整除,而且(它-2)或者(它+2)一定能被8整除,所以上式能被8整除。
综上所述,原式能被3*5*8=120整除
=n^5-n^3-4n^3+4n
=n^3*(n^2-1)-4n(n^2-1)
=n*(n^2-1)(n^2-4)
=(n-2)(n-1)n(n+1)(n+2)
五个连续的整数必有一个能被5整除,所以上式能被5整除。
五个连续的整数至少有一个能被3整除,所以上式能被3整除。
五个连续的整数至少有一个能被4整除,而且(它-2)或者(它+2)一定能被8整除,所以上式能被8整除。
综上所述,原式能被3*5*8=120整除
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯