如图,在平行四边形abcd中,∠dab和∠cda的平分线交于e,∠abc和∠bcd的平分线交于F,求证:EF=AB-BC
答案:2 悬赏:60 手机版
解决时间 2021-02-09 14:06
- 提问者网友:浪荡绅士
- 2021-02-09 03:55
如图,在平行四边形abcd中,∠dab和∠cda的平分线交于e,∠abc和∠bcd的平分线交于F,求证:EF=AB-BC
最佳答案
- 五星知识达人网友:动情书生
- 2020-12-31 16:17
延长AE交BC于G,延长CF交AB于H
在平行四边形ABCD中
角A=角C,AE平分角A CF平分角C
角bcf=角bae
AB平行CD
角dge=角bae
角dge=角bcf
角b=角d dE平分角d bF平分角b
角edg=角fbc
ed=bf因为平行
BCF≌EDG
DG=BC GE=CF
因为AG‖CF
EF‖=CG
CG=DC-DG
EF=AB-BC
在平行四边形ABCD中
角A=角C,AE平分角A CF平分角C
角bcf=角bae
AB平行CD
角dge=角bae
角dge=角bcf
角b=角d dE平分角d bF平分角b
角edg=角fbc
ed=bf因为平行
BCF≌EDG
DG=BC GE=CF
因为AG‖CF
EF‖=CG
CG=DC-DG
EF=AB-BC
全部回答
- 1楼网友:底特律间谍
- 2019-09-26 03:18
你可以这样:过点e作eg‖bf ∴∠abf=∠age
∵四边形abcd为平行四边形 ∴∠bad+∠adc=180°,∠cba+∠bda=180°
∵ae、de、bf为角平分线 ∴ade+ead=90°,∠bae+∠abf=90°
∴∠bae+∠age=90°
∴∠dea=∠aeg=90° ∴∠aeg+∠dea=180°
∴d、e、g三点共线 并且ae为三角形adg的垂线
又∵ae为三角形adg的角平分线 ∴三角形adg为等腰三角形 ad=ag=bc
同理 延长bf交cd于点h后,三角形bch为等腰三角形 bc=ch ch为垂直平分线
∴eg=de=dg/2 bf=fh=bh/2
很容易可以证明三角形adg与三角形bch相似 dg=bh
∴bf=eg
又bf‖eg ∴四边形bfeg为平行四边形
∴bg=ef
∴ef=bg=ab-ag=ab-bc
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯