设一列数a1,a2,a3,…,a2010中任意三个相邻数之和都是35,已知a3=2x,a20=15,a99=3-x,那么a2011=________.
答案:2 悬赏:80 手机版
解决时间 2021-04-09 12:45
- 提问者网友:欲劫无渡
- 2021-04-09 01:06
设一列数a1,a2,a3,…,a2010中任意三个相邻数之和都是35,已知a3=2x,a20=15,a99=3-x,那么a2011=________.
最佳答案
- 五星知识达人网友:有你哪都是故乡
- 2021-04-09 02:20
18解析分析:首先根据任意三个相邻数之和都是35,推出a1=a4,a2=a5,a3=a6,总结规律为a1=a3n+1,a2=a3n+2,a3=a3n,即可推出a20=a2=15,a99=a3=3-x=2x,求出a3=2,即可推出 a1=18,由a2011=a670×3+1,推出a2011=a1=18.解答:∵任意三个相邻数之和都是35,
∴a1+a2+a3=a2+a3+a4=35,a2+a3+a4=a3+a4+a5=35,a3+a4+a5=a4+a5+a6=35,
∴a1=a4,a2=a5,a3=a6,∴a1=a3n+1,a2=a3n+2,a3=a3n,∵20=3×6+2,a20=15,
∴a20=a2=15;∵99=3×33
∴a99=a3,
∵a3=2x,a99=3-x,
∴3-x=2x,
∴x=1,
∴a3=2,∵a1+a2+a3=35,
∴a1=35-15-2=18,
∵2011=670×3+1,
∴a2011=a1=18.
故
∴a1+a2+a3=a2+a3+a4=35,a2+a3+a4=a3+a4+a5=35,a3+a4+a5=a4+a5+a6=35,
∴a1=a4,a2=a5,a3=a6,∴a1=a3n+1,a2=a3n+2,a3=a3n,∵20=3×6+2,a20=15,
∴a20=a2=15;∵99=3×33
∴a99=a3,
∵a3=2x,a99=3-x,
∴3-x=2x,
∴x=1,
∴a3=2,∵a1+a2+a3=35,
∴a1=35-15-2=18,
∵2011=670×3+1,
∴a2011=a1=18.
故
全部回答
- 1楼网友:長槍戰八方
- 2021-04-09 02:51
我学会了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯