如何计算样本容量
答案:1 悬赏:80 手机版
解决时间 2021-02-10 14:44
- 提问者网友:浮克旳回音
- 2021-02-10 11:14
如何计算样本容量
最佳答案
- 五星知识达人网友:鱼芗
- 2021-02-10 12:43
问题一:样本容量怎么算?答案是什么? 样本容量又称“样本数”。指一个样本的必要抽样单位数目。在组织抽样调查时,抽样误差的大小直接影响样本指标代表性的大小,而必要的样本单位数目是保证抽样误差不超过某一给定范围的重要因素之一。因此,在抽样设计时,必须决定样本单位数目,因为适当的样本单位数目是保证样本指标具有充分代表性的基本前提。
样本容量的大小涉及到调研中所要包括的单元数。样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
具体确定样本量还有相应的统计学公式,不同的抽样方法对应不同的公式。根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变化程度;(2) 所要求或允许的误差大小(即精度要求);(3) 要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。问题二:如何确定样本量 样本量n=C2σ2/p2
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
精度还是你看情况决定的
可以看看这个
blog.sina.com.cn/s/blog_48bc65a90100bc14.html
样本量n=C2σ2/p2
1.C — 置信系数(Confidence Coefficient),也称置信水平、可信因子,是以百分比(90%、95%、99%等)表示的抽样结果能够代表总体的概率。一般而言,95%的置信水平则认为高度满意,置信水平越高,样本量越大。1减去置信系数为风险水平(Level of Risk),是样本结果不能代表总体的概率。
例如C选95%,即抽样结果能够代表总体的概率为95%
2.P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
比如你可以接受的样本与总体之间的误差范围是0~90%
3.σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
这个你会算吧
所以 样本量n=C2σ2/p2
你相应把数代进去问题三:样本容量怎么确定? 20分结合你的数据量和分类标记的工作量,我想大概1/100(即400个就行)问题四:样本容量应该如何确定? 样本容量就是那个样本的数量吧..多是100.500.1000之类的.不会很零丁的问题五:统计学中的有一个 样本量 这个是如何计算出来的? 30分从总体中抽取的样本元素的总个数。
样本量的计算公式为: N=Z 2 ×(P ×(1-P))/E 2
其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。问题六:如何计算样本量 我来回答:对于13万的人,做调查,得取多少样本,这个得看你要求的精确度,统计学上有这样的一套公式, www.zjsec.com/peixun/pei21.HTM 而对于市场调查; 在市场研究中,常常有客户和研究者询问:“要掌握市场总体情况,到底需要多少样本量?”,或者说“我要求调查精度达到95%,需要多少样本量?”。对此,我往往感到难以回答,因为要解决这个问题,需要考虑的因素是多方面的:研究的对象,研究的主要目的,抽样方法,调查经费…。有人说,北京这么大,上千万人口,我们怎么也得做一万人的访问才能代表北京市吧。根据统计学原理,完全不必。只要在500-1000左右就够了。当然前提是,我们要按照科学的方法去抽样。 根据市场调查的经验,市场潜力等涉及量比较严格的调查所需样本量较大,而产品测试,产品定价,广告效果等人们间彼此差异不是特别大或对量的要求不严格的调查所需样本量较小些。 样本量的大小涉及到调研中所要包括的人数或单元数。确定样本量的大小是比较复杂的问题,既要有定性的考虑也要有定量的考虑。 从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。 具体确定样本量还有相应的统计学公式,根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变动程度;(2) 所要求或允许的误差大小;(3) 要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同城市分别进行推断时,大城市多抽,小城市少抽这种说法原则上是不对的。在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。 总之,在确定抽样方法和样本量的时候,既要考虑调查目的,调查性质,精度要求(抽样误差)等,又要考虑实际操作的可实施性,非抽样误差的控制、经费预算等。专业调查公司在这方面会根据您的情况及调查性质,进行综合权衡,达到一个最优的样本量的选择。 实际研究中的一些经验 根据一些学者的研究,以及远东零点在市场研究中的经验,市场调查中确定样本量通常的做法是: 1、通过对方差的估计,采用公式计算所需样本量,主要做法有: 2、用两步抽样,在调查前先抽取少量的样本,得到标准差S的估计,然后代入公式中,得到下一步抽样所需样本量n; 3、如果有以前类似调查的数据,可以使用以前调查的方差作为总体方差的估计。 4、根据经验,确定样本量,主要方法有: 5、如果以前有人做过类似的研究,初学者可以参照前人的样本。 6、如果是大型城市、省市一级的地区性研......余下全文>>问题七:样本量的计算方法 5分你好,具体确定样本量还有相应的统计学公式,根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变动程度;(2) 所要求或允许的误差大小;(3) 要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同城市分别进行推断时,大城市多抽,小城市少抽这种说法原则上是不对的。在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。
从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。
总之,在确定抽样方法和样本量的时候,既要考虑调查目的,调查性质,精度要求(抽样误差)等,又要考虑实际操作的可实施性,非抽样误差的控制、经费预算等。专业调查公司在这方面会根据您的情况及调查性质,进行综合权衡,达到一个最优的样本量的选择。问题八:如何确定样本量 样本量n=C2σ2/p2
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
精度还是你看情况决定的
可以看看这个
blog.sina.com.cn/s/blog_48bc65a90100bc14.html
样本量n=C2σ2/p2
1.C — 置信系数(Confidence Coefficient),也称置信水平、可信因子,是以百分比(90%、95%、99%等)表示的抽样结果能够代表总体的概率。一般而言,95%的置信水平则认为高度满意,置信水平越高,样本量越大。1减去置信系数为风险水平(Level of Risk),是样本结果不能代表总体的概率。
例如C选95%,即抽样结果能够代表总体的概率为95%
2.P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
比如你可以接受的样本与总体之间的误差范围是0~90%
3.σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
这个你会算吧
所以 样本量n=C2σ2/p2
你相应把数代进去问题九:怎样计算样本量 一般根据临界t值、方差S2和允许误差d,计算
样本量n=t×S2/d2问题十:统计学中的有一个 样本量 这个是如何计算出来的? 30分从总体中抽取的样本元素的总个数。
样本量的计算公式为: N=Z 2 ×(P ×(1-P))/E 2
其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。
样本容量的大小涉及到调研中所要包括的单元数。样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
具体确定样本量还有相应的统计学公式,不同的抽样方法对应不同的公式。根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变化程度;(2) 所要求或允许的误差大小(即精度要求);(3) 要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。问题二:如何确定样本量 样本量n=C2σ2/p2
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
精度还是你看情况决定的
可以看看这个
blog.sina.com.cn/s/blog_48bc65a90100bc14.html
样本量n=C2σ2/p2
1.C — 置信系数(Confidence Coefficient),也称置信水平、可信因子,是以百分比(90%、95%、99%等)表示的抽样结果能够代表总体的概率。一般而言,95%的置信水平则认为高度满意,置信水平越高,样本量越大。1减去置信系数为风险水平(Level of Risk),是样本结果不能代表总体的概率。
例如C选95%,即抽样结果能够代表总体的概率为95%
2.P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
比如你可以接受的样本与总体之间的误差范围是0~90%
3.σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
这个你会算吧
所以 样本量n=C2σ2/p2
你相应把数代进去问题三:样本容量怎么确定? 20分结合你的数据量和分类标记的工作量,我想大概1/100(即400个就行)问题四:样本容量应该如何确定? 样本容量就是那个样本的数量吧..多是100.500.1000之类的.不会很零丁的问题五:统计学中的有一个 样本量 这个是如何计算出来的? 30分从总体中抽取的样本元素的总个数。
样本量的计算公式为: N=Z 2 ×(P ×(1-P))/E 2
其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。问题六:如何计算样本量 我来回答:对于13万的人,做调查,得取多少样本,这个得看你要求的精确度,统计学上有这样的一套公式, www.zjsec.com/peixun/pei21.HTM 而对于市场调查; 在市场研究中,常常有客户和研究者询问:“要掌握市场总体情况,到底需要多少样本量?”,或者说“我要求调查精度达到95%,需要多少样本量?”。对此,我往往感到难以回答,因为要解决这个问题,需要考虑的因素是多方面的:研究的对象,研究的主要目的,抽样方法,调查经费…。有人说,北京这么大,上千万人口,我们怎么也得做一万人的访问才能代表北京市吧。根据统计学原理,完全不必。只要在500-1000左右就够了。当然前提是,我们要按照科学的方法去抽样。 根据市场调查的经验,市场潜力等涉及量比较严格的调查所需样本量较大,而产品测试,产品定价,广告效果等人们间彼此差异不是特别大或对量的要求不严格的调查所需样本量较小些。 样本量的大小涉及到调研中所要包括的人数或单元数。确定样本量的大小是比较复杂的问题,既要有定性的考虑也要有定量的考虑。 从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。 具体确定样本量还有相应的统计学公式,根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变动程度;(2) 所要求或允许的误差大小;(3) 要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同城市分别进行推断时,大城市多抽,小城市少抽这种说法原则上是不对的。在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。 总之,在确定抽样方法和样本量的时候,既要考虑调查目的,调查性质,精度要求(抽样误差)等,又要考虑实际操作的可实施性,非抽样误差的控制、经费预算等。专业调查公司在这方面会根据您的情况及调查性质,进行综合权衡,达到一个最优的样本量的选择。 实际研究中的一些经验 根据一些学者的研究,以及远东零点在市场研究中的经验,市场调查中确定样本量通常的做法是: 1、通过对方差的估计,采用公式计算所需样本量,主要做法有: 2、用两步抽样,在调查前先抽取少量的样本,得到标准差S的估计,然后代入公式中,得到下一步抽样所需样本量n; 3、如果有以前类似调查的数据,可以使用以前调查的方差作为总体方差的估计。 4、根据经验,确定样本量,主要方法有: 5、如果以前有人做过类似的研究,初学者可以参照前人的样本。 6、如果是大型城市、省市一级的地区性研......余下全文>>问题七:样本量的计算方法 5分你好,具体确定样本量还有相应的统计学公式,根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变动程度;(2) 所要求或允许的误差大小;(3) 要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同城市分别进行推断时,大城市多抽,小城市少抽这种说法原则上是不对的。在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。
从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。
总之,在确定抽样方法和样本量的时候,既要考虑调查目的,调查性质,精度要求(抽样误差)等,又要考虑实际操作的可实施性,非抽样误差的控制、经费预算等。专业调查公司在这方面会根据您的情况及调查性质,进行综合权衡,达到一个最优的样本量的选择。问题八:如何确定样本量 样本量n=C2σ2/p2
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
精度还是你看情况决定的
可以看看这个
blog.sina.com.cn/s/blog_48bc65a90100bc14.html
样本量n=C2σ2/p2
1.C — 置信系数(Confidence Coefficient),也称置信水平、可信因子,是以百分比(90%、95%、99%等)表示的抽样结果能够代表总体的概率。一般而言,95%的置信水平则认为高度满意,置信水平越高,样本量越大。1减去置信系数为风险水平(Level of Risk),是样本结果不能代表总体的概率。
例如C选95%,即抽样结果能够代表总体的概率为95%
2.P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
比如你可以接受的样本与总体之间的误差范围是0~90%
3.σ— 总体标准差(Population Standard Deviation),是衡量总体中个别单位偏离总体平均值的离散程度的指标,标准差越大,样本量越大,用于变量抽样中。
假设这组数据的平均值是m
方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]
标准差是方差开方后的结果(即方差的算术平方根)
这个你会算吧
所以 样本量n=C2σ2/p2
你相应把数代进去问题九:怎样计算样本量 一般根据临界t值、方差S2和允许误差d,计算
样本量n=t×S2/d2问题十:统计学中的有一个 样本量 这个是如何计算出来的? 30分从总体中抽取的样本元素的总个数。
样本量的计算公式为: N=Z 2 ×(P ×(1-P))/E 2
其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯