ABC的内角A,B,C的对边分别为a,b,c,且2tanAtanC=tanAtanB+tanBtan
答案:2 悬赏:70 手机版
解决时间 2021-02-14 01:20
- 提问者网友:星軌
- 2021-02-13 10:32
ABC的内角A,B,C的对边分别为a,b,c,且2tanAtanC=tanAtanB+tanBtan
最佳答案
- 五星知识达人网友:十年萤火照君眠
- 2021-02-13 11:15
1.切化弦,把tan变为sin/cos,用两角和的正弦公式,2sinBsinB=sinAsinA+sinCsinC,即2b^2=a^2+c^2,cosB=(a^2+c^2-b^2)/2ac=b^2/ac,由基本不等式,2b^2=a^2+c^2>=2ac2.sinBsinB化为cos二倍角,右边展开,合一变换,最后答案是根号3加1,当B是30度
全部回答
- 1楼网友:话散在刀尖上
- 2021-02-13 12:23
谢谢回答!!!
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯