已知数列{an}的前几项和为Sn=1-5+9-13+17-21+.+(-1)^n+1*(4n-3),则S15+S22-S31的值是
已知数列{an}的前几项和为Sn=1-5+9-13+17-21+.+(-1)^n+1*(4n-3),则S15+S22-S
答案:1 悬赏:20 手机版
解决时间 2021-03-10 00:42
- 提问者网友:自食苦果
- 2021-03-09 09:19
最佳答案
- 五星知识达人网友:思契十里
- 2021-03-09 10:35
利用数列相邻的两项结合和为定值-4,把数列的两项结合一组,根据n 的奇偶性来判断结合的组数,当n为偶数时,结合成 n/2组,每组为-4;当为奇数时,结合成 (n-1)/2组,每组和为-4,剩余最后一个数为正数,再求和.
解析:∵Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3)
∴S15=(1-5)+(9-13)+…(49-53)+57=(-4)×7+57=29
S22=(1-5)+(9-13)+(17-21)+…+(81-85)=-4×11=-44
S31=(1-5)+(9-13)+(17-21)+…+(113-117)+121=-4×15+121=61
∴S15+S22-S31=29-44-61=-76
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯