正数列{an}满足X1=a,Xn+1=1/2(Xn+a/Xn),求证⑴n≥2时,Xn≥√a,⑵n≥2时,Xn≥Xn+1
正数列{an}满足X1=a,Xn+1=1/2(Xn+a/Xn),求证⑴n≥2时,Xn≥√a,⑵n≥2时,Xn≥Xn+1
答案:2 悬赏:30 手机版
解决时间 2021-12-29 18:02
- 提问者网友:杀手的诗
- 2021-12-29 13:11
最佳答案
- 五星知识达人网友:走死在岁月里
- 2021-12-29 14:12
a>=0,x1>=0,Xn+1=1/2(Xn+a/Xn)
有:xn>=0,Xn+1=1/2(Xn+a/Xn)>=2*1/2*√a=√a
即xn>=√a;n>=2
xn+1-xn=1/2*(xn+a/xn-2xn)=1/2(a/xn-xn)=1/2((a-xn^2)/xn)
xn^2>=a
所以xn+1-xn
全部回答
- 1楼网友:轻熟杀无赦
- 2021-12-29 15:18
谢谢了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯