抛物线Y^2=4X,p(1,2)A(x1,y1)B(x2,y2)在抛物线上,PA与PB的斜率存在且倾斜角互补时,
求y1+y2的值及直线AB的斜率
抛物线Y^2=4X,p(1,2)A(x1,y1)B(x2,y2)在抛物线上,PA与PB的斜率存在且倾斜角互补时,
答案:1 悬赏:0 手机版
解决时间 2021-05-24 23:41
- 提问者网友:焚苦与心
- 2021-05-24 03:02
最佳答案
- 五星知识达人网友:你可爱的野爹
- 2021-05-24 03:46
tan(a)=(2-y1)/(1-x1)
tan(b)=(2-y2)/(1-x2)
tan(a+b)=(tan(a)+tan(b))/(1-tan(a)*tan(b))
PA与PB的倾斜角互补
所以0=tan(a)+tan(b)
即(2-y1)/(1-x1)+(2-y2)/(1-x2)=0
可得:(2-y1)(1-x2)+(2-y2)(1-x1)
=(2-y1)(1-1/4*y2^2)+(2-y2)(1-1/4*y1^2)
=1/4*(y1-2)(y2-2)(4+y1+y2)
=0
所以y1=2或y2=2或y1+y2=-4
因为PA与PB的斜率存在,所以y1=2或y2=2都舍去.
所以y1+y2=-4
(y2-y1)/(x2-x1)
=4*(y2-y1)/(y2^2-y1^2)
=4/(y2+y1)
=-1
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯