设椭圆C:x2/a2+y2/b2【a大于b大于0】的右焦点为F,过F的直线l与椭圆C相交于A,B两点
答案:2 悬赏:50 手机版
解决时间 2021-01-28 13:28
- 提问者网友:孤山下
- 2021-01-28 01:02
设椭圆C:x2/a2+y2/b2【a大于b大于0】的右焦点为F,过F的直线l与椭圆C相交于A,B两点
最佳答案
- 五星知识达人网友:有你哪都是故乡
- 2021-01-28 01:36
1.设出A(x1,y1),B(x2,y2),F(c,0),因为AF=2FB,即(c-x1,-y1)=2(x2-c,y2), 即y1=-2y2x^2/a^2+y^2/b^2=1与y=√3(x-c)联立,得到(1/3b^2+a^2)y^2+(2b^2c/√3)y-b^4=0y1+y2=-(2b^2c/√3)/ (1/3b^2+a^2)=-y2, y2=(2b^2c/√3)/ (1/3b^2+a^2)y1*y2=-b^4/(1/3b^2+a^2)=-2*y2^2, 2*y2^2= b^4/(1/3b^2+a^2)将y2代入上式,得到b^4/(1/3b^2+a^2)=2*(4b^4*c^2/3)/ (1/3b^2+a^2)^2即8c^2=b^2+3a^2, 即8c^2=a^2-c^2+3a^2,c^2=4/9a^2,e=2/3,2.|AB|=√(1+k^2)|x1-x2|=√(1+1/k^2)|y1-y2|=√(1+1/k^2)|3y2|= 因为e=2/3,所以c=2/3a,b=√5/3a, 代入y2=(2b^2c/√3)/ (1/3b^2+a^2)所以y2=(2b^2c/√3)/ (1/3b^2+a^2)=5 √3/24a|AB|=√(1+1/k^2)|3y2|=(2√3/3)| 5 √3/8 a |=5/4a=15/4,所以a=3, b=√5所以x^2/9+y^2/5=1
全部回答
- 1楼网友:末日狂欢
- 2021-01-28 02:47
收益了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯