函数y=f(x)(x∈R)有下列命题:
(1)在同一坐标系中,y=f(x-1)与y=f(-x+1)的图象关于直线x=-1对称;
(2)若f(2-x)=f(x),则函数y=f(x)的图象关于直线x=1对称;
(3)若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期;
(4)若f(2-x)=-f(x),则函数y=f(x)的图象关于(1,0)对称.其中正确命题的序号是______.
函数y=f(x)(x∈R)有下列命题:(1)在同一坐标系中,y=f(x-1)与y=f(-x+1)的图象关于直线x=-1对称;(2)若f(2-x)=f(x),则函数y=
答案:2 悬赏:0 手机版
解决时间 2021-03-22 10:54
- 提问者网友:且恨且铭记
- 2021-03-21 14:54
最佳答案
- 五星知识达人网友:英雄的欲望
- 2021-03-21 16:34
解:根据题意,依次分析4个命题:
对于(1):y=f(x)的图象与y=f(-x)的图象关于y轴对称,将y=f(x)向右平移一个单位得到f(x-1)的图象,
将y=f(-x)的图象向右平移一个单位得到y=[-(x-1)]=f(-x+1)的图象,则在同一坐标系中,y=f(x-1)与y=f(-x+1)的图象关于直线x=1对称,则(1)错误;
对于(2):在f(2-x)=f(x)中,令t=x-1,则f(1-t)=f(1+t),分析可得函数y=f(x)的图象关于直线x=1对称,则(2)正确;
对于(3):在f(x-1)=f(x+1)中,令t=x-1,有f(t)=f(t+2),则函数y=f(x)是周期函数,且2是一个周期,(3)正确;
对于(4):在f(2-x)=-f(x)中,令t=x-1,则f(1-t)=-f(1+t),则函数y=f(x)的图象关于(1,0)对称,则(4)正确;
综合可得,正确命题的序号是(2)、(3)、(4),
故
对于(1):y=f(x)的图象与y=f(-x)的图象关于y轴对称,将y=f(x)向右平移一个单位得到f(x-1)的图象,
将y=f(-x)的图象向右平移一个单位得到y=[-(x-1)]=f(-x+1)的图象,则在同一坐标系中,y=f(x-1)与y=f(-x+1)的图象关于直线x=1对称,则(1)错误;
对于(2):在f(2-x)=f(x)中,令t=x-1,则f(1-t)=f(1+t),分析可得函数y=f(x)的图象关于直线x=1对称,则(2)正确;
对于(3):在f(x-1)=f(x+1)中,令t=x-1,有f(t)=f(t+2),则函数y=f(x)是周期函数,且2是一个周期,(3)正确;
对于(4):在f(2-x)=-f(x)中,令t=x-1,则f(1-t)=-f(1+t),则函数y=f(x)的图象关于(1,0)对称,则(4)正确;
综合可得,正确命题的序号是(2)、(3)、(4),
故
全部回答
- 1楼网友:鱼忧
- 2021-03-21 17:00
感谢回答,我学习了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯