若w=-2/(1+根号3i), 则1+w+w^2等于
答案:3 悬赏:20 手机版
解决时间 2021-03-29 20:53
- 提问者网友:流星是天使的眼泪
- 2021-03-29 11:14
若w=-2/(1+根号3i), 则1+w+w^2等于
最佳答案
- 五星知识达人网友:平生事
- 2021-03-29 12:39
w=-2/(1+根号3i)
=-2(1-根号3i)/[(1+根号3i)(1-根号3i)]
=-2(1-根号3i)/[1²-(根号3i)²]
=-2(1-根号3i)/[1-(-3)]
=-2(1-根号3i)/[1+3]
=-2(1-根号3i)/4
=-(1-根号3i)/2
=(根号3i-1)/2
w^2=(根号3i-1)²/4
=[(根号3i)²-2根号3i+1]/4
=[(-3)-2根号3i+1]/4
=[-2-2根号3i]/4
=-(1+根号3i)/2
1+w+w^2
=1+(根号3i-1)/2+[-(1+根号3i)/2]
=1+(根号3i-1-1-根号3i)/2
=1+(-1-1)/2
=1-1
=0
=-2(1-根号3i)/[(1+根号3i)(1-根号3i)]
=-2(1-根号3i)/[1²-(根号3i)²]
=-2(1-根号3i)/[1-(-3)]
=-2(1-根号3i)/[1+3]
=-2(1-根号3i)/4
=-(1-根号3i)/2
=(根号3i-1)/2
w^2=(根号3i-1)²/4
=[(根号3i)²-2根号3i+1]/4
=[(-3)-2根号3i+1]/4
=[-2-2根号3i]/4
=-(1+根号3i)/2
1+w+w^2
=1+(根号3i-1)/2+[-(1+根号3i)/2]
=1+(根号3i-1-1-根号3i)/2
=1+(-1-1)/2
=1-1
=0
全部回答
- 1楼网友:渊鱼
- 2021-03-29 14:25
还没学,对不起
- 2楼网友:孤老序
- 2021-03-29 13:38
w=-2/(1+根号3i)=(根号3i-1)/2
w^2=-(1+根号3i)/2
1+w+w^2等于=0
w^2=-(1+根号3i)/2
1+w+w^2等于=0
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯