求曲线z=根号(4-x^2-y^2)与z=根号3(x^2+y^2)所围立体体积
答案:2 悬赏:0 手机版
解决时间 2021-02-12 15:58
- 提问者网友:且恨且铭记
- 2021-02-11 19:44
求曲线z=根号(4-x^2-y^2)与z=根号3(x^2+y^2)所围立体体积
最佳答案
- 五星知识达人网友:夜余生
- 2021-02-11 20:51
求曲面z=√(4-x²-y²)与z=√[3(x²+y²)]所围立体体积曲面z=√(4-x²-y²)是顶点在原点,半径R=2的球面x²+y²+z²=4的上半部分;曲面z=√[3(x²+y²)]是顶点在原点,以z轴正向为轴线的锥顶朝下的锥面;令√(4-x²-y²)=√[3(x²+y²)],得4-x²-y²=3(x²+y²),化简得x²+y²=1,z=√3;即球面与锥面的交线是一个距xoy平面的距离为√3,圆心在z轴上,且半径=1的圆;因此这两个曲面所围体积是一个圆锥与一个球缺(球缺底面半径r=1,球面半径R=2,高度h=2-√3)的体积之和,即:V=(1/3)π×1²×√3+(1/6)π×(2-√3)²[2-(2-√3)/3]=(√3/3)π+[(16-9√3)/18]π=(8/9-√3/6)π======以下答案可供参考======供参考答案1:这两个是曲面而不是曲线吧,第一个函数化简得到z^2+x^2+y^2=4,z>0,是一个位于z轴正半轴的半径为2的半圆面;第二个函数是一个顶点为原点,开口向上,斜率为根号3的圆锥面。这两者所围部分为一个圆锥和一个球缺的合并体,圆锥高度为根号3,底面半径为1,体积为3^(1/2)π/3,球缺的半径为2,高度为2-3^(1/2),体积为(π/3)(4+3^(1/2))*(2-3^(1/2))^2,总体积就是这两者之和,为(16-8*3^(1/2))π/3。
全部回答
- 1楼网友:酒醒三更
- 2021-02-11 22:30
这个问题我还想问问老师呢
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯