如何证明三维形式的柯西不等式
答案:3 悬赏:0 手机版
解决时间 2021-03-12 15:20
- 提问者网友:戎马万世
- 2021-03-11 19:41
如何证明三维形式的柯西不等式
最佳答案
- 五星知识达人网友:愁杀梦里人
- 2021-03-11 20:43
三维形式的柯西不等式的证明如下:
两边开平方得:
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
扩展资料:
1、向量形式的柯西不等式:
2、向量形式推广:
3、概率论形式的柯西不等式:
4、积分形式的柯西不等式:
两边开平方得:
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应称作Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。
扩展资料:
1、向量形式的柯西不等式:
2、向量形式推广:
3、概率论形式的柯西不等式:
4、积分形式的柯西不等式:
全部回答
- 1楼网友:狂恋
- 2021-03-11 23:10
三维形式的柯西不等式:zhidao(a^2+b^2+c^2)(d^2+e^2+f^2)>=(ad+be+cf)^版2
证明:权
左边=(ad)^2+(be)^2+(cf)^2+[(ae)^2+(bd)^2]+[(af)^2+(cd)^2]+[(bf)^2+(ce)^2]
右边=(ad)^2+(be)^2+(cf)^2+2(ad)*(be)+2(ad)*(cf)+2(be)*(cf)
根据均值不等式,有:
(ae)^2+(bd)^2>=2(ad)*(be)
(af)^2+(cd)^2>=2(ad)*(cf)
(bf)^2+(ce)^2>=2(be)*(cf)
所以左边>=右边,当且仅当ae=bd,af=cd,bf=ce时,等式成立
证毕
- 2楼网友:夜余生
- 2021-03-11 22:21
三维的是: (a1*a2+b1*b2+c1*c2)^2 <= (a1^2+b1^2+c1^2)(a2^2+b2^2+c2^2)柯西不等式可以用向量来证明 柯西不等式的一般证法有以下几种:■①cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2. 我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2) 则我们知道恒有 f(x) ≥ 0. 用二次函数无实根或只有一个实根的条件,就有 δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0. 于是移项得到结论。 ■②用向量来证. m=(a1,a2....an) n=(b1,b2....bn) mn=a1b1+a2b2+....+anbn=(a1^+a2^+....+an^)^1/2乘以(b1^+b2^+....+bn^)^1/2乘以cosx. 因为cosx小于等于0,所以:a1b1+a2b2+....+anbn小于等于a1^+a2^+....+an^)^1/2乘以(b1^+b2^+....+bn^)^1/2 这就证明了不等式.柯西不等式还有很多种,这里只取两种较常用的证法.
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯