已知0<α<2π,且α终边不再坐标轴上,化简:1/(cosα乘根号(1+(sin^2α/cos^2α)))+2/(根号(1/sin^2α)-1)乘tanα
答案:1 悬赏:50 手机版
解决时间 2021-05-10 17:36
- 提问者网友:城市野鹿
- 2021-05-10 14:44
已知0<α<2π,且α终边不再坐标轴上,化简:1/(cosα乘根号(1+(sin^2α/cos^2α)))+2/(根号(1/sin^2α)-1)乘tanα
最佳答案
- 五星知识达人网友:愁杀梦里人
- 2021-05-10 15:54
诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z)
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯