高中数学求模的方法,要全,具体,总结啊啊啊啊啊啊
- 提问者网友:城市野鹿
- 2021-02-11 04:47
- 五星知识达人网友:煞尾
- 2021-02-11 05:35
空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:
根号下(x^2+y^2+z^2)。
其中x^2表示x的平方。
求平面的法向量:
①在平面内任取两个不共线的向量,用坐标表示
②设这个平面的法向量为(x,y,z)
③写出②所设法向量与①的两个向量垂直的坐标表示(3元方程组,两个方程)
④给x或y或z任取一个特殊值,带入③中的方程组,变成2元方程组,求解。
⑤若对法向量的模a有要求,再解关于λ的方程λ|(x,y,z)|=a.
- 1楼网友:走死在岁月里
- 2021-02-11 06:01
〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念
①设 、 是两个非空的数集,如果按照某种对应法则 ,对于集合 中任何一个数 ,在集合 中都有唯一确定的数 和它对应,那么这样的对应(包括集合 , 以及 到 的对应法则 )叫做集合 到 的一个函数,记作 .
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设 是两个实数,且 ,满足 的实数 的集合叫做闭区间,记做 ;满足 的实数 的集合叫做开区间,记做 ;满足 ,或 的实数 的集合叫做半开半闭区间,分别记做 , ;满足 的实数 的集合分别记做 .
注意:对于集合 与区间 ,前者 可以大于或等于 ,而后者必须
.
(3)求函数的定义域时,一般遵循以下原则:
① 是整式时,定义域是全体实数.
② 是分式函数时,定义域是使分母不为零的一切实数.
③ 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑤ 中, .
⑥零(负)指数幂的底数不能为零.
⑦若 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知 的定义域为 ,其复合函数 的定义域应由不等式 解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确