∫(sinx)^5*dx
答案:3 悬赏:70 手机版
解决时间 2021-04-03 00:12
- 提问者网友:轻浮
- 2021-04-02 01:26
∫(sinx)^5*dx
最佳答案
- 五星知识达人网友:独钓一江月
- 2021-04-02 02:05
∫(sinx)^5 dx
=∫(sinx)(1-(cosx)^2)^2dx
=-∫(1-(cosx)^2)^2dcosx
=-∫(t^2-1)^2dt
=-∫t^4-2t^2+1dt
=-t^5/5+2t^3/3-t+C
=...
=∫(sinx)(1-(cosx)^2)^2dx
=-∫(1-(cosx)^2)^2dcosx
=-∫(t^2-1)^2dt
=-∫t^4-2t^2+1dt
=-t^5/5+2t^3/3-t+C
=...
全部回答
- 1楼网友:猎心人
- 2021-04-02 03:12
∫(sinx)^5*dx
=-∫(sinx)^4*dcosx
=-∫[1-(cosx^2)]^2*dcosx
=-(cosx)^5/5+2*(cosx)^3/3-cosx+c
=-∫(sinx)^4*dcosx
=-∫[1-(cosx^2)]^2*dcosx
=-(cosx)^5/5+2*(cosx)^3/3-cosx+c
- 2楼网友:行路难
- 2021-04-02 02:10
解:由(cosx)'=-sinx可得:d(cosx)=-sinxdx所以:
∫(sinx)^5*dx
=∫(1-(cosx)^2)^2sinxdx
=-∫(1-(cosx)^2)^2d(cosx)
=-∫[1-2(cosx)^2+(cosx)^4]d(cosx)
=-cosx+(2/3)(cosx)^3-(1/5)(cosx)^5+C
∫(sinx)^5*dx
=∫(1-(cosx)^2)^2sinxdx
=-∫(1-(cosx)^2)^2d(cosx)
=-∫[1-2(cosx)^2+(cosx)^4]d(cosx)
=-cosx+(2/3)(cosx)^3-(1/5)(cosx)^5+C
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯