三角函数化简
- 提问者网友:酱爆肉
- 2021-05-04 18:57
- 五星知识达人网友:掌灯师
- 2021-05-04 19:50
解:
由于:sin^3(x)sin3x
=sin^2(x)[sinx*sin3x]
=sin^2(x)[sinx*sin(2x+x)]
=sin^2(x)[sinx(sin2xcosx+sinxcos2x)]
=sin^2(x)[sinxcosx*sin2x+sin^2(x)cos2x]
=(1-cos2x)/2*[(1/2)(2sinxcosx)sin2x+(1-cos2x)/2*cos2x]
=[(1-cos2x)/4]*[sin^2(2x)+(1-cos2x)cos2x]
=[(1-cos2x)/4]*[1-cos^2(2x)+cos2x-cos^2(2x)]
=(1/4)(1-cos2x)*[-2cos^2(2x)+cos2x+1]
cos^3(x)cos3x
=cos^2(x)[cosx*cos(2x+x)]
=cos^2(x)[cosx(cos2xcosx-sin2xsinx)]
=cos^2(x)[cos^2(x)cos2x-sin2xsinxcosx]
=(1+cos2x)/2*[(1+cos2x)/2*cos2x-(1/2)(2sinxcosx)sin2x]
=(1+cos2x)/4*[(1+cos2x)cos2x-sin^2(2x)]
=(1/4)(1+cos2x)*[2cos^2(2x)+cos2x-1]
设cos2x=t
则:
[sin3xsin^3(x)+cos3xcos^3(x)]/cos^2(2x)
=[(1/4)(1-t)(-2t^2+t+1)+(1/4)(1+t)(2t^2+t-1)]/t^2
={(1/4)[(-2t^2+t+1+2t^3-t^2-t)+(2t^2+t-1+2t^3+t^2-t)]}/t^2
=[(1/4)(4t^3)]/t^2
=t^3/t^2
=t=cos2x
则:原式
=cos2x+sin2x
=√2sin(2x+∏/4)
(辅助角公式)
由于:sin(2x+∏/4)属于[-1,1]
则:√2sin(2x+∏/4)属于[-√2,√2]
其最小值为:-√2