因式分解:(X+1)(X+2)(x+3)(X+4)+1
说明连续四个偶数的积加上16,一定是完全平方数。
1. (x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x^2+5x+4)(x^2+5x+6)+1
=[(x^2+5x)+4][(x^2+5x)+6]+1
=(x^2+5x)^2+10(x^2+5x)+25
=(x^2+5x+5)^2
2. 设四个连续偶数是2n-2,2n,2n+2,2n+4
(2n-2)(2n)(2n+2)(2n+4)+16
=16n^4+32n^3-16n^2-32n+16
=16(n^4+2n^3-n^2-2n+1)
=16(n^4+2n^3+n^2-2n^2-2n+1)
=16(n^2+n-1)^2
=[4(n^2+n-1)]^2
所以四个偶数的积再加上16,一定是一个完全平方数