已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE,交CE于点F,交CD于点G(如图①),求证:AE=CG; (2)直线AH垂直于直线CE,交CE的延长线于点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.
已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE,交CE
答案:2 悬赏:40 手机版
解决时间 2021-04-09 03:38
- 提问者网友:溺爱和你
- 2021-04-08 13:54
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-04-08 14:44
见解析
⑴证明:设∠ACE=∠1,因为直线BF垂直于CE,交CE于点F,所以∠CFB=90°,
所以∠ECB+∠CBF=90°.
又因为∠1+∠ECB=90°,所以∠1=∠CBF .
因为AC="BC," ∠ACB=90°,所以∠A=∠CBA=45°.
又因为点D是AB的中点,所以∠DCB=45°.
因为∠1=∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.
(2)解:CM=BE.证明如下:因为∠ACB=90°,所以∠ACH +∠BCF=90°.
因为 CH⊥AM,即∠CHA=90°,所以 ∠ACH +∠CAH=90°,所以∠BCF=∠CAH.
因为 CD为等腰直角三角形斜边上的中线,所以 CD=AD.所以∠ACD=45°.
在△CAM与△BCE中,CA=BC,∠CAH =∠BCF, ∠ACM =∠CBE,
所以 △CAM ≌△BCE,所以CM=BE.
⑴证明:设∠ACE=∠1,因为直线BF垂直于CE,交CE于点F,所以∠CFB=90°,
所以∠ECB+∠CBF=90°.
又因为∠1+∠ECB=90°,所以∠1=∠CBF .
因为AC="BC," ∠ACB=90°,所以∠A=∠CBA=45°.
又因为点D是AB的中点,所以∠DCB=45°.
因为∠1=∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.
(2)解:CM=BE.证明如下:因为∠ACB=90°,所以∠ACH +∠BCF=90°.
因为 CH⊥AM,即∠CHA=90°,所以 ∠ACH +∠CAH=90°,所以∠BCF=∠CAH.
因为 CD为等腰直角三角形斜边上的中线,所以 CD=AD.所以∠ACD=45°.
在△CAM与△BCE中,CA=BC,∠CAH =∠BCF, ∠ACM =∠CBE,
所以 △CAM ≌△BCE,所以CM=BE.
全部回答
- 1楼网友:何以畏孤独
- 2021-04-08 15:14
(1)证明:∵点d是ab中点,ac=bc,∠acb=90°
∴cd⊥ab,∠acd=∠bcd=45°
∴∠cad=∠cbd=45°
∴∠cae=∠bcg又bf⊥ce
∴∠cbg+∠bcf=90°又∠ace+∠bcf=90°
∴∠ace=∠cbg∴△aec≌△cgb
∴ae=cg
(2)be=cm
证明:∵ch⊥hm,cd⊥ed∴∠cma+∠mch=90°∠bec+∠mch=90°
∴∠cma=∠bec
又ac=bc,∠acm=∠cbe=45°
∴△bce≌△cam
∴be=cm
请采纳,谢谢~
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯