a level的数学1.solve giving your answer to 3 sighnificent figur
- 提问者网友:泪痣哥哥
- 2021-04-28 11:55
1.solve giving your answer to 3 sighnificent figures
3的x次=31
2.find the first 3 terms in ascending powers of x of (1+3x)的7
次
3..hence evaluate 1.000003的7次 correct to 10 decimal places
- 五星知识达人网友:有你哪都是故乡
- 2021-04-28 13:27
1.Solve giving your answer to 3 significant figures 3的x次=31.
翻译:3^x = 31.请将答案精确到三位有效数字.
Solution:
3^x = 31
ln3^x = ln31
xln3 = ln31
x = ln31/ln3 = 3.13
2.Find the first 3 terms in ascending powers of x of (1+3x)的7次
翻译:按x的升幂展开(1+3x)^7的前三项.
Solution:
(1+3x)^7
= 1 + 7×(3x) + (7C2)×(3x)² + ...
= 1 + 21x + 189x² + ...
3..hence evaluate 1.000003的7次 correct to 10 decimal places
翻译:因此估计1.000003^7的值,将结果精确到10位小数.
Solution:
(1+0.000003)^7
=1+7×0.000003+21×(0.000003)²+35×0.000003³+35×0.000003⁴+21×0.000003^5+7×0.000003^6+0.000003^7
=1.000021.
说明:
第一题,现在完全属于O-Level考试内容(基本对数运算加s.f.);
第二题,二项式(Binomial)展开,分式法(Partial Fraction)也基本全部放在
O-Level考试.
第三题,上面是用二项式展开来做的,此题的前半部分不详,无法知道应该用
什么方法求解.可能用二项式展开,也可能用牛顿近似法计算(现在已
经完全不考),也可以用麦克劳琳级数计算,但是本题严格来说是泰勒
级数.麦克劳琳级数在英联邦的高中(A-level)考试大纲内,泰勒级数
超出大纲.用一阶导数估计,几年前在英联邦的初中(O-Level)大纲内,
这几年已经没有考了.