高斯用尺规做图做出正17边形有什么意义
答案:2 悬赏:0 手机版
解决时间 2021-04-06 06:50
- 提问者网友:动次大次蹦擦擦
- 2021-04-05 23:47
高斯用尺规做图做出正17边形有什么意义
最佳答案
- 五星知识达人网友:鸽屿
- 2021-04-06 00:53
是世人明白了尺规作图的本质:只有有理数的二次根下添加域内的数才能通过尺规作出.
全部回答
- 1楼网友:孤老序
- 2021-04-06 01:25
关于正十七边形的画法(高斯的思路,本人并非有意剽窃^_^): 有一个定理在这里要用到的: 若长为|a|,|b|的线段可以用几何方法做出来,那么长为|c|的线段也能用几何方法做出的, 其中c是方程x^2+ax+b=0的实根。 上面的定理实际上就是在有线段长度|a|和|b|的时候,做出长为sqrt(a^2-4b)的线段。 (这一步,大家会画吧?) 而要在一个单位圆中做出正十七边形,主要就是做出长度是cos(2pai/17)的线段。 下面我把当年高斯证明可以做出cos(2pai/17)的证明给出,同时也就给出了具体的做法。 设a=2[cos(2pai/17)+cos(4pai/17)+cos(8pai/17)+cos(16pai/17)]>0 a1=2[cos(6pai/17)+cos(10pai/17)+cos(12pai/17)+cos(14pai/17)]<0 则有a+a1=-1,a*a1=-4,即a,a1是方程x^2+x-4=0的根,所以长为|a|和|a1|的线段可以做出。 令b=2[cos(2pai/17)+cos(8pai/17)]>0 b1=2[cos(4pai/17)+cos(16pai/17)]<0 c=2[cos(6pai/17)+cos(10pai/17)]>0 c1=2[cos(12pai/17)+cos(14pai/17)]<0 则有b+b1=a b*b1=-1 c+c1=a1 c*c1=-1 同样道理,长度是|b|,|b1|,|c|,|c1|的线段都可以做出来的。 再有2cos(2pai/17)+2cos(8pai/17)=b [2cos(2pai/17)]*[2cos(8pai/17)]=c 这样,2cos(2pai/17)是方程x^2-bx+c=0较大的实根, 显然也可以做出来,并且作图的方法上面已经给出来了
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯