急!!!设e^z=xyz,求d^2z/dxdy用多元函数方法求隐函数的二阶导数 求详解
答案:2 悬赏:0 手机版
解决时间 2021-02-11 01:30
- 提问者网友:不爱我么
- 2021-02-10 00:33
急!!!设e^z=xyz,求d^2z/dxdy用多元函数方法求隐函数的二阶导数 求详解
最佳答案
- 五星知识达人网友:话散在刀尖上
- 2021-02-10 02:12
F(x,y,z)=e^z-xyz=0
dz/dx=-Fx/Fz, dz/dy=-Fy/Fz
Fx=-yz; Fy=-xz; Fz=e^z-xy
dz/dx=yz/(e^z-xy);
dz/dy=xz/(e^z-xy);
d^2z/dxdy=d(dz/dx)/dy
=d(-Fx/Fz)/dy+d(-Fx/Fz)/dz*dz/dy
=[z(e^z-xy)-yz*(-x)]/(e^z-xy)^2+[y(e^z-xy)-yz*e^z]/(e^z-xy)^2*xz/(e^z-xy)
=ze^z/(e^z-xy)^2+xyz(e^z-ze^z-xy)/(e^z-xy)^3
=[ze^(2z)-xyze^z+xyz(e^z-ze^z-xy)]/(e^z-xy)^3
=[ze^(2z)-xyz(ze^z+xy)]/(e^z-xy)^3来自:求助得到的回答
dz/dx=-Fx/Fz, dz/dy=-Fy/Fz
Fx=-yz; Fy=-xz; Fz=e^z-xy
dz/dx=yz/(e^z-xy);
dz/dy=xz/(e^z-xy);
d^2z/dxdy=d(dz/dx)/dy
=d(-Fx/Fz)/dy+d(-Fx/Fz)/dz*dz/dy
=[z(e^z-xy)-yz*(-x)]/(e^z-xy)^2+[y(e^z-xy)-yz*e^z]/(e^z-xy)^2*xz/(e^z-xy)
=ze^z/(e^z-xy)^2+xyz(e^z-ze^z-xy)/(e^z-xy)^3
=[ze^(2z)-xyze^z+xyz(e^z-ze^z-xy)]/(e^z-xy)^3
=[ze^(2z)-xyz(ze^z+xy)]/(e^z-xy)^3来自:求助得到的回答
全部回答
- 1楼网友:妄饮晩冬酒
- 2021-02-10 03:44
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯