求定积分-1到1 (x+x^2)/根号下1-x^2 dx 答案是π/2
答案:2 悬赏:0 手机版
解决时间 2021-02-20 03:37
- 提问者网友:孤山下
- 2021-02-19 16:08
怎么做的?
最佳答案
- 五星知识达人网友:逃夭
- 2021-02-19 16:45
解:
令x=sint,则t=arcsinx
x:-1→1,则t:-π/2→π/2
∫[-1:1][(x+x²)/√(1-x²)]dx
=∫[-1:1][x/√(1-x²)]dx +∫[-1:1][x²/√(1-x²)]dx
=0+2∫[0:π/2][sin²t/√(1-sin²t)]d(sint)
=2∫[0:π/2](sin²t·cost/cost)dt
=∫[0:π/2](1-cos2t)dt
=(t-½sin2t)|[0:π/2]
=(π/2 -½sinπ)-(0-½sin0)
=π/2-0 -0+0
=π/2
令x=sint,则t=arcsinx
x:-1→1,则t:-π/2→π/2
∫[-1:1][(x+x²)/√(1-x²)]dx
=∫[-1:1][x/√(1-x²)]dx +∫[-1:1][x²/√(1-x²)]dx
=0+2∫[0:π/2][sin²t/√(1-sin²t)]d(sint)
=2∫[0:π/2](sin²t·cost/cost)dt
=∫[0:π/2](1-cos2t)dt
=(t-½sin2t)|[0:π/2]
=(π/2 -½sinπ)-(0-½sin0)
=π/2-0 -0+0
=π/2
全部回答
- 1楼网友:举杯邀酒敬孤独
- 2021-02-19 18:06
设x = siny,dx = cosy dy
当x = 0,y = 0;当x = 1/2,y = π/6
∫(0→1/2) √(1 - x²) dx
= ∫(0→π/6) √(1 - sin²y) • cosy dy
= ∫(0→π/6) cos²y dy
= (1/2)∫(0→π/6) (1 + cos2y) dy
= (1/2)(y + 1/2 • sin2y) |(0→π/6)
= (1/2)(π/6 + √3/4)
= (3√3 + 2π)/24
我要举报
如以上问答信息为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!
大家都在看
推荐资讯